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Why does efficient DL inference matters?

How to generally accelerate DL inference?

Research on specific applications
• Low-level vision
• Image generation
• 3D perception
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Goal of	Artificial	Intelligence
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Fei-Fei	Li
Co-Director	of	HAI

——"ImageNet Project"

“Artificial Intelligence has the
potential to help us realize our
shared dream of a better future for
all of humanity. …, our vision is
led by our commitment to studying,
guiding and developing human-
centered AI technologies and
applications.”

Goal: To serve humanity and improve human life

WorldAI SystemHuman

Interaction with 
Human

Interaction with 
World

• Understand human’s instructions
• Improve their sensory experiences

• Understand the physical world
• Make decisions to influence the world



Pathway	to	Improve	the	Interaction
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WorldAI SystemHuman

Interaction with 
Human

Interaction with 
World

Image / VideoPoint CloudText

Large scale of data



Pathway	to	Improve	the	Interaction
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WorldAI SystemHuman

Interaction with 
Human

Interaction with 
World

Generative tasks

Image 
Generation

Dialogue 
Generation

Code 
Generation

3D Assets 
Generation
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Big data, multimodal, generative tasks

90% data in last 2 years [1] multimodal data in healthcare [2]

[1] MIT 6.S191 Course: https://www.youtube.com/watch?v=QZxcTZj0L-M
[2] Acosta, J.N., Falcone, G.J., Rajpurkar, P. et al. Multimodal biomedical AI. Nat Med 28, 1773–1784 (2022). https://doi.org/10.1038/s41591-022-01981-2

generative tasks are attracting attentions

DL Trend: Data and Task

Big Data Generative TasksMultimodal

2023/8/29 NICS-efc Lab

Text/Code Symbol Generation

Image/3D assets generation
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Big data, multimodal, generative tasks

DL Trend: Data and Task

2023/8/29 NICS-efc Lab

More Tasks

L4
Autonomous Driving

Intelligent perception of 
vehicle road collaboration

GB/Day/Car → TB/Day/Car 5-6 types, 30-40 sensors Enormous generative 
applications

Source: EqualOcean Intelligence 2021, Computing Power Driven Vehicles - 2021 Research Report on the Development of Computing Power of China's Intelligent Vehicles

Big Data Multimodal

Text

Image

Text

Image

3D

Audio

video

Generative Tasks
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The model size has being rapidly increased

DL Trend: Model	and	Algorithm

2023/8/29 NICS-efc Lab

[1] Villalobos et al. “Machine Learning Model Sizes and the Parameter Gap.” arXiv preprint arXiv:2207.02852 (2022).
[2] Brown et al. “Language Models are Few-Shot Learners.” arXiv, 2020, https://doi.org/10.48550/arXiv.2005.14165.
[3] Rombatch et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR’22.
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2018 - 2022
5 orders of 
magnitude increase 
in parameter size [1]
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Example: 
GPT-3 [2] (year 2020): 175B params, 𝟏. 𝟑×𝟏𝟎𝟓 GPU days to 
train, 32s/seq inference speed on NVIDIA A100.
Stable Diffusion [3] (year 2022): 1.45B params, 𝟔. 𝟐×𝟏𝟎𝟑 GPU 
days to train, 3.5s/img inference speed on NVIDIA A100.

2021 - 2022
24 large generative 
models are released in 
the past two years [4]

2021

2022

[4] Roberto Gozalo-Brizuela, et al. “ChatGPT is not all you need. A 
State of the Art Review of large Generative AI models.” arXiv, 2023.



Various	Application	Scenario
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WorldAI SystemHuman

Interaction with 
Human

Interaction with 
World

Sensor
Wearable Device

Mobile Phone
IoT Device

Smart City
Auto-driving Car

Smart City
Auto-driving Car
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From cloud center to tiny edge device

DL Trend: Computing	Power

2023/8/29 NICS-efc Lab

Sensor, Wearable Device Mobile / IoT Device Smart City / Auto-driving Car Cloud Center
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From cloud center to tiny edge device

DL Trend: Computing	Power

2023/8/29 NICS-efc Lab

Global Annual CAPEX Spend on Edge [1]

Edge: 88% v.s. Cloud: 12%

Enterprise IoT market 2019-2027 [2]

IoT market grew 21.5% in 2022

[1] State of the Edge 2021: A Market and Ecosystem Report for Edge Computing
[2] https://iot-analytics.com/iot-market-size/



DL	Trend:	Summary
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Data & 
Task

Model &
Algorithm

Computing
Power

Big data

Generative tasks Large model

GPT-3

Multimodal

Tiny edge device



• Gap caused by the large model and the tiny edge device

Application	Challenges
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Video Conference
~30FPS

Mobile Phone / PC
(1~10 TOPS)

Outdoor Detection
10~25Hz

Auto-driving Car
(10~100 TOPS)

Real-time Requirement 
on Constrained Platform 

Large Model
<1FPS

NVIDIA A100
(19.5 TFLOPS)

E.g., stable diffusion: 1.45B, 5.7TOPs, 2s/img
GPT-3: 175B, 664TOPs, 32s/seq

High Latency 
caused by Large Model Size

Our research goal is to reduce the inference latency of 
the model to satisfy the application requirement (e.g., 

latency on certain platform)



Direction	to	Mitigate	the	Gap
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𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝐷𝑒𝑚𝑎𝑛𝑑

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒 ∗ 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑈𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

VGG-16
~30 GOPs

Xilinx DPU
(400 GOPS)

~40% Utilization

~191ms



Direction	to	Mitigate	the	Gap

2023/8/29 NICS-efc Lab Page 16

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝐷𝑒𝑚𝑎𝑛𝑑

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒 ∗ 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑈𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Data
Representation

Model 
Weight

Neural
Architecture

Lower
Computing Demand

Improve
Hardware Utilization

Model 
Quantization

Compressed Dimension

NAS / 
Pruning /

Factorization
Weight 
Reuse

Directions for
Model Compression

VGG-16
~30 GOPs

Xilinx DPU
(400 GOPS)

~40% Utilization

~191ms



Direction	to	Mitigate	the	Gap
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𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒: 𝑇𝑎𝑠𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦

MSDNet[1] achieves better trade-off
between accuracy and budget on ImageNet

[1] Huang et al., Multi-Scale Dense Convolutional Networks for 
Efficient Prediction, ICLR’18 oral



Direction	to	Mitigate	the	Gap
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Training 
Process

Inference 
Process

Improve
Model Capacity

Enhance
Model Training

Structural
Reparametrization

Enhanced Process

Directions for
Perf. Enhancement

MSDNet[1] achieves better trade-off
between accuracy and budget on ImageNet Distillation

Dynamic Inference

[1] Huang et al., Multi-Scale Dense Convolutional Networks for 
Efficient Prediction, ICLR’18 oral

𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒: 𝑇𝑎𝑠𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦



Automated	Model	Compression
• Varying tasks and hardware may need different neural network
• Need to consider multiple objectives or constraints in the meantime

2023/8/29 NICS-efc Lab Page 19

We need automated model compression!
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1 Why does efficient AI inference matters?

2 How to generally accelerate AI inference?

3 Research on specific applications
• Low-level vision
• Image generation
• 3D perception



Model	Compression
• Basic Problem Definition

• Neural network architecture 𝑎; Search space 𝑆; Network parameters 𝑤
• Valid task perf 𝑅()*; Train task loss 𝐿+,)-.; Complexity function 𝐹; Budget 𝐵

• Optimize in the Network Architecture dimension: NAS / Pruning
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Maximize
!∈#

𝑹 𝑤∗ 𝑎 !𝑎

s.t. 𝑤∗ 𝑎 = argmin% 𝐿&'!()(𝑤, 𝑎)

𝑭 𝑎 ≤ 𝑩 Constraints: latency, throughput, energy, …

Targets: task perf, perf loss, …

NAS Search Space

Topological Connections

Conv

Operators
Avg Pool Max Pool

1 x 1

3 x 3

Kernel
Size

0.5

1.0

Channel
Expansion

32

48

Init
Channel

Configs

Weight
Granularity

Channel
Granularity

Keep or Not: 2!

Pruning Space



Model	Compression
• Basic Problem Definition

• Neural network architecture 𝑎; Search space 𝑆; Network parameters 𝑤
• Valid task perf 𝑅()*; Train task loss 𝐿+,)-.; Complexity function 𝐹; Budget 𝐵

• Optimize in the Data Representation dimension: Quantization
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Bitwidth Granularity

Layer

Element

Channel
1e-5 1e51 16~

W/A PTQ/QAT

Rounding

Quantization Space

Maximize
!∈#

𝑹 𝑤∗ 𝑎 !𝑎

s.t. 𝑤∗ 𝑎 = argmin% 𝐿&'!()(𝑤, 𝑎)

𝑭 𝑎 ≤ 𝑩 Constraints: latency, throughput, energy, …

Targets: task perf, perf loss, …

Scaling Factor Weights



Enhanced	Techniques
• Optimize the model capacity: Dynamic Inference

• Enhance the model training: Distillation
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Small 
Network

Wrong

Big 
Network

Simple
instance

Difficult 
instance

Inefficient
Simple
instance

Difficult 
instance

Better trade-off between accuracy & efficiency

Gou et al., Knowledge Distillation: A Survey, IJCV’21



(Review)	Direction	to	Mitigate	the	Gap
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𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝐷𝑒𝑚𝑎𝑛𝑑

𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑐𝑒 ∗ 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑈𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

VGG-16
~30 GOPs

Xilinx DPU
(400 GOPS)

~40% Utilization

Weight 
Representation

Model 
Weight

Neural
Architecture

Lower
Computing Demand

Improve
Hardware Utilization

Model 
Quantization

Weight 
Reuse

Compressed Dimension

NAS / 
Pruning / 

Factorization

~191ms

Direction: 
Model Compression



Neural	Architecture	Search
• Definition: Given the hardware-related constraints (e.g., latency, FLOPs), search for the

network architecture to satisfy the constraints and maximize the accuracy
• Main Components:

• Search Space: Define the searchable configurations, the space of candidate architectures
• Evaluation Strategy: How to evaluate the architecture
• Search Strategy: How to explore the search space
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Diverse Hardwares Diverse Tasks

Neural Architecture Search (NAS)

Refer to our websites https://sites.google.com/view/nas-nicsefc for more introduction on NAS.

https://sites.google.com/view/nas-nicsefc


NAS	Development	Trends
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• Trends
• Improve the tradeoff between NAS efficiency and performance
• Take the hardware system into consideration → co-design with system configurations
• Manually design search space → Automatically design
• …

NASNet
[Zoph et al., CVPR18]

Zoph@Google
NAS Acceleration

Mnasnet
[Tan et al., CVPR19]

Tan@Google
Hardware-aware NAS

Search Space Design
NDS

[Radosavovic et al., ICCV19]
Radosavovic@FAIR

T-NAS
[Lian et al., ICLR20]

Lian@Tencent

InterpNAS
[Ru et al., ICLR21]

Ru@Oxford
Advanced Topics

NSE
[Ci et al., ICCV21]

Ci@USYD

NAO
[Luo et al., NeurIPS18]

Luo@UTSC&MSRA

ENAS
[Pham et al., ICML18]

Pham@Google

NASBench-101
[Ying et al., PMLR19]

Ying@Google

FBNet
[Wu et al., CVPR19]

Wu@UCB

HW-NAS-Bench
[Li et al., ICLR21]

Li@Rich



Challenge
• Key Challenge: NAS process is slow

• Large search space: Need to evaluate many architectures to explore sufficiently
• Costly vanilla evaluation: The evaluation of each architecture is costly
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Zoph et al., “Neural architecture search with reinforcement learning”, ICLR’17.
Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR’18.
Real et al.., “Regularized Evolution for Image Classifier Architecture Search”, AAAI’19.



Direction	towards	Efficient	NAS
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Direction	towards	Efficient	NAS
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Direction	towards	Efficient	NAS
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Direction	towards	Efficient	NAS
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Our	Solution	towards	Efficient	NAS
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Architecture
Encoder

Neural Architecture
Description (DAG)

Continuous
Embedding

Architecture 
Modeling



Our	Solution	towards	Efficient	NAS
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Arch
Encoder

Predicted
score

Predictor-based NAS

Architecture-level Encoding



Our	Solution	towards	Efficient	NAS
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Arch
Encoder

Predicted
score

Predictor-based NAS
The context similarity of ops

decide whether suitable for parameter sharing

Conv 1x1 Conv 3x3 MaxPool

Conv 1x1 Conv 5x5 MaxPool

Arch
Encoder

Architecture-level Encoding Operation-level 
Encoding



Enhance	the	Predictor-based	NAS
• Predictor-based NAS

• Typical construction of the predictor
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The predictor’s fitness is vital to sample efficiency

Should mind 2 aspects
• How to encode
• How to train



GATES:	How	to	Encode
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GATES

OutIn

Conv
1x1

Conv
3x3

Max
Pool

Input virtual info.

⨀

⨀

⨀

“virtual information”

Attention mask of different ops

Information propagation

0

1

2

3 4

• Actual feature map computation: 
F2=Conv3x3(F0 + F1)

• “Virtual info transformation” in the encoding process:
N2=𝒎𝟐⨀ (N0+N1);

𝑚$ = σ(EMB%&'()*)W+) is the attention mask of Conv3x3

Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20. 

Mimic the actual NN information flow
Properly encode computationally isomorphic architectures to the same embedding



GATES:	How	to	Train
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Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20. 

Use ranking loss to train the predictor
Ranking loss are better surrogate of ranking performance than regression loss

GT perf: 0.87

ET perf: 0.56

GT perf: 0.84

ET perf: 0.43

>

>

GT perf: 0.87

ET perf: 0.83

GT perf: 0.84

ET perf: 0.85

>

<

The ranking of the estimated performances 
(ET perf) is more important



GATES:	Results	(on	NAS-Bench-101)
• Ranking correlation (Kendall’s Tau)

• Encoder comparison

• Loss function comparison
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Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20. 

GATES outperform other encoders consistently,
especially when there are few training samples

Ranking losses are better surrogate 
to ranking measures than regression losses

• Sample efficiency
• Encoder comparison

• Comparison with baseline search strategies

551.0! and 59.25! more efficient than RS/EA
Median:       220k            24k         0.4k



Verification	on	HW-SW	Co-design	
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Sun, Wang, Zhu, Ning+ et al., Gibbon: Efficient Co-Exploration of NN Model and Processing-In-Memory Architecture, DATE 22.

Design high accuracy and efficient Process-In-Memory (PIM)-based system

Co-explore the NN and PIM architectures based on predictor-based NAS

• 0.2~10.7% accuracy promotion
• 2.51! area reduction
• 6.48! EDP reduction
• 8.4~41.3! search efficiency improvement



DELE:	How	to	Train
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Architecture
Encoder

Encoding Process

Training Process

Utilizing Low-fidelity Information

Train

Ground-truth accuracy
(high-fidelity)

Accurate but expensive

Test

Zero-shot information
(low-fidelity)

Less accurate but cheap

Test

Zhao*, Ning* et al., “Dynamic Ensemble of Low-fidelity Experts: Mitigating NAS Cold-Start”, AAAI’23 Oral.

Utilize low-fidelity information to help train the predictor
More low-fidelity information help learn better architecture representation



DELE:	Results
• Ranking correlation (Kendall’s Tau)

• Sample efficiency
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DELE achieves better ranking performance 
across different search spaces, encoders 
and training proportions.

DELE discovers better architectures
with less query number.

Zhao*, Ning* et al., “Dynamic Ensemble of Low-fidelity Experts: Mitigating NAS Cold-Start”, AAAI’23 Oral.



Summary	of	Architecture	Encoding	(Modeling)
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Architecture
Encoder[1,2]

Encoding Process
Training ProcessHow to Train 

(Loss) [1,2]

How to train the encoder?
Depends on how we use the encoding!

Use encoding to rank
architecture performance

Maximize ranking ability i.e., 
Minimize ranking loss

GATES[1]

Use encoding to choose
parameters for operations

Minimize parameter-sharing loss, 
train jointly with supernet

CLOSE[2]

auxiliary low-fidelity information

#Param GradNorm SynFlow…How to use
during encoding[3]

How to use
during training[3,4]

How to utilize more information (what information)?
Incorporate the knowledge into encoding or through training.

Low-fidelity information can
be beneficial for modeling

Utilize low-fidelity information
in encoding and training

DELE/GATES++[3,4]

[1] Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20. 
[2] Zhou*, Ning* et al., “CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS”, ECCV’22.

[3] Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme with Multifaceted Information”, 
TPAMI’23. 
[4] Zhao*, Ning* et al., “Dynamic Ensemble of Low-fidelity Experts: Mitigating NAS Cold-Start”, AAAI’23 Oral.



Neural	Network	Pruning
• Definition: Given the hardware-related constraints (e.g., latency, pruning ratio), prune the

network structure to satisfy the constraints and minimize the accuracy loss
• Pruning Granularity: Structured Pruning / Unstructured Pruning
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Unstructured Pruning
Granularity: Weight

(Example: Deep Compression [Han et. al. ICLR15])

Structured Pruning:
Granularity: Channel/Group

(Example: AMC [Han et. al. ECCV18])



Pruning	Development	Trends
• Trends

• Unstructured Pruning: Study on The Lottery Ticket Hypothesis
• Structured/Semi-structured Pruning: Hardware-Software Co-design for better trade-off

between sparsity and performance
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Our	Work	on	Effective	Pruning
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Programming-based iterative pruning[1,2] DSA: Differentiable Sparsity Allocation[3]

[1] Wang, Ning et al, Hardware Design and Software Practices for Efficient Neural Network Inference, Low-Power Computer Vision. Chapman and Hall/CRC 55-90. 2020.
[2] Shi*, Ning*, Guo et al., Memory-Oriented Structural Pruning for Efficient Image Restoration, AAAI’23.
[3] Ning et al., DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation, ECCV’20.

Design controllable pruning schemes

1. Iteratively cut down resource consumption controllably
2. Each iter. is solved with a closed-form programming solver



Neural	Network	Quantization
• Definition: Given the hardware-related constraints (e.g., latency, bitwidth), quantize FP32

tensors (weights/activations) to satisfy the constraints and minimize the accuracy loss
• Quantization Methods: Post-Training Quantization / Quantization-Aware Training
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Quantized w

1.1 1.7

0.2 2.3

1 2

0 2

Full-precision param w
Quantizer

Param Update

Post-Training Quantization 
(Example: DFQ [Nagel et al. ICCV19])

Quantization-Aware Training
(Example: QT [Jacob et al. CVPR18])

FP Data Integer Data

Quantizer

1.1 1.7

0.2 2.3

1 2

0 2



Quantization	Development	Trends
• Trends

• Use lower bitwidth (8 → 4 → 2)
• Low-bit inference → Training
• Hardware-Algorithm co-design of the low-bit computing system
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Our	Work	on	Effective	Quantization
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[1] Zhong, Ning et al., Exploring the Potential of Low-bit Training of Convolutional Neural Networks, TCAD 22.

Achieve efficient low-bit training

Special format design that (1) is hardware-friendly; (2) maintains representation range

• 4-/2-bit training within 1% accuracy loss
• 10.2× energy efficiency than FP32
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1 Why does efficient AI inference matters?

2 How to generally accelerate AI inference?

3 Research on specific applications
• Low-level vision
• Image generation
• 3D perception



≈

!" Contents

2023/8/29 NICS-efc Lab Page 50

1 Why does efficient AI inference matters?

2 How to generally accelerate AI inference?

3 Research on specific applications
• Low-level vision with pruning
• Image generation with NAS
• 3D perception with dynamic inference
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1 Why does efficient AI inference matters?

2 How to generally accelerate AI inference?

3 Research on specific applications
• Low-level vision
• Image generation
• 3D perception



Background: Image	Generation
• Application field: 2D image/3D assets generation task

• Diverse Tasks & Efficiency Demands
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Diverse Tasks

Text-Image Generation

Efficiency Demands

Firm Real-time: The generation speed of 
the AI model should reach 1s/img

Low Memory: Deploying models on PC or 
Mobile Phone (500M~1G runtime memory) 
becomes popular in many application scenario.

• Stable Diffusion has been used as a plug-in to help paint in 
PhotoShop[1], which demands fast generation speed to 
satisfy the users’ frequent requests.

Image Editing

!A shirt with the 
inscription: I love 
generative models"

Image Super-resolution 3D Generation

?

[1] Photoshop Stable Diffusion Plugin, https://github.com/AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin

https://github.com/AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin


Application	Challenges
• Challenges of Diffusion Models
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Application Demands
• Low Memory Cost: 500M~1G runtime 

memory cost on  edge devices

• Low Latency: Achieve 1s/img (firm 

real-time) speed on edge devices

Future Trends
• Larger-scale: Larger resolution, more

training data

• More tasks & Multi-Modal : More 

conditioning types and more data modal.
Call for 10x~100x Efficiency Improvement

Efficiency of current methods

Nvidia A100

[1] Rombatch et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR’22.
[2] Song et al., Denoising Diffusion Implicit Models, ICLR’21.

* Stable diffusion inference using different samplers. 

[3] Liu et al., Pseudo Numerical Methods for Diffusion Models on Manifolds, ICLR’22.
[4] Lu et al., DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around

10 Steps, NeurIPS’22.

Sampler* Memory (512x512) Latency (512x512)
DDIM[2]

~12G
7~14s/img (100-200 NFE)

PNDM[3] 3.5~7s/img (50-100 NFE)

DPM-Solver[4] 1.4~3.5s/img (20-50 NFE)



Background:	Generative	Model
• Generative model aims at learning the data distribution
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Model

Conditioning Y

Input Output Obey

Data Distribution XPrior Distribution

2011
Auto-Regressive 

Model

2013
Variational

Auto-Encoder

2014
Generative

Adversarial Network

2020
Diffusion Model

Low quality Mode Collapse 
Unstable training

High quality
Stable training



Background	&	Motivation
• Diffusion in a nutshell: learn to iteratively denoise a gaussian noise for generation
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Sampler NFE Inference time per step
(NVIDIA A100, BS=1)

Total Time
(NVIDIA A100, BS=1)

DDIM[2] 100~200
~0.07s

7-14s/image

PNDM[3] 50~100 3.5~7s/image

DPM-Solver[4] 20~50 1.4~3.5s/image



Background	&	Motivation
• Diffusion in a nutshell: learn to iteratively denoise a gaussian noise for generation
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Sampler NFE Inference time per step
(NVIDIA A100, BS=1)

Total Time
(NVIDIA A100, BS=1)

DDIM[2] 100~200
~0.07s

7-14s/image

PNDM[3] 50~100 3.5~7s/image

DPM-Solver[4] 20~50 1.4~3.5s/image

1. The number of 
sampling steps is large



Background	&	Motivation
• Diffusion in a nutshell: learn to iteratively denoise a gaussian noise for generation
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Sampler NFE Inference time per step
(NVIDIA A100, BS=1)

Total Time
(NVIDIA A100, BS=1)

DDIM[2] 100~200
~0.07s

7-14s/image

PNDM[3] 50~100 3.5~7s/image

DPM-Solver[4] 20~50 1.4~3.5s/image

1. The number of 
sampling steps is large

2. The inference speed 
for each step is slow



Background	&	Motivation
• Diffusion in a nutshell: learn to iteratively denoise a gaussian noise for generation
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Sampler NFE Inference time per step
(NVIDIA A100, BS=1)

Total Time
(NVIDIA A100, BS=1)

DDIM[2] 100~200
~0.07s

7-14s/image

PNDM[3] 50~100 3.5~7s/image

DPM-Solver[4] 20~50 1.4~3.5s/image

1. The number of 
sampling steps is large

2. The inference speed 
for each step is slow

Our research goal is to accelerate the inference 
speed of the diffusion model



Idea	and	Oracle	Experiments
• Existing SOTA methods adopt the same model during all the diffusion steps

• Use different models in different steps to reduce the computation demand?
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Some mixtures of large and small models get 
better performance than only use large model

Observation1

Larger & 
Higher Latency

Small models outperform large models at 
some steps in terms of denoising loss

Observation2

Mixing small and large 
models can possibly 
get better FID than only 
use large model

Arch1 is smaller than 
Arch2, but obtains smaller 
denoising loss between 1 
to 50 epochs.

Achieve better trade-off between quality and time 
cost by optimizing model schedule



• Formulation: Given a pre-trained model zoo and the generation time constraint, search
for the model schedule to satisfy the constraint and maximize the quality score (i.e., FID)

• Challenges: Slow search process
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Problem	Formulation	and	Challenges

model schedule

[𝑎/, … , 𝑎0, … , 𝑎1]

Extremely large 
optimization space

E.g., 1084 when N=6 and 
T=100

Slow evaluation 
of single schedule

E.g., 20min ~ 1h to 
evaluate one schedule

Inference 
on Validation Set 

Input

Neural Network

Null model



• Predictor-based search for a good model schedule satisfying the constraint
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Method



• Experimental Results
• Accelerate generation process by 2-5x (on A100) without sacrificing the performance

2023/8/29 NICS-efc Lab Page 62

Results



• Experimental Results
• Accelerate generation process by 2-5x (on A100) without sacrificing the performance
• Achieve better FID than Stable Diffusion by optimizing the schedule
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Results



• Demonstration of generated images with the same generation time
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Results

Previous 
SOTA Method

Our Method

LSUN-Church
(Budget: 4s, bs=64)

Stable Diffusion
(Budget: 15 NFE)



Empirical	Insights
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Unconditional Generation

• Common

• Low budgets: Small models & Sufficient steps 

• High budgets: Large models

• Varies with dataset

• CIFAR-10/CelebA/ImageNet-64 (32x32, 64x64): 

• Larger models & Denser steps for lower t

• LSUN-Church (256x256):

• Smaller models & Sparser steps for lower t

Conditional Generation
with Stable Diffusion (512x512)

• Mixing checkpoints with the same 

complexity but different functionalities is still 

beneficial for the efficiency-quality trade-off

• 1-st solver is preferred for lower t



≈

!" Contents
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1 Why does efficient AI inference matters?

2 How to generally accelerate AI inference?

3 Research on specific applications
• Low-level vision
• Image generation
• 3D perception



Background: 3D Perception
• Application field: 3D scene understanding for autonomous driving

• Diverse Tasks & Efficiency Demands
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Perception Prediction ControlLocalization

Diverse Tasks

3D Detection

3D Tracking

3D Segmentation

Line Detection
Map Segmentation

Trajectory Prediction
…

Efficiency Demands

Real-time: According to different scenarios 
(e.g., APA, High-way, City) and functionalities, 
the perception system should reach 10~30Hz 
(e.g., Tesla vision can reach 36Hz)



[1] Huang et al., : BEVDet: High-performance Multi-camera 3D Object Detection in Bird-Eye-
View, Arxiv.
[2] Li et al., BEVFormer: Learning Bird‘s-Eye-View Representation from Multi-Camera 
Images via Spatiotemporal Transformers, ECCV22.
[3] Alex et al., PointPillars: Fast Encoders for Object Detection from Point Clouds, CVPR19.
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Background: 3D Perception
• Application field: 3D scene understanding for autonomous driving

• Different schemes

[4] Shi et al., PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR19.
[5] Yang et al., 3DSSD: Point-based 3D Single Stage Object Detector, CVPR20.
[6] Shi et al., PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection, CVPR20.
[7] Yin et al., Center-based 3D Object Detection and Tracking, CVPR21.

Pseudo 3D (Pillar) Point Voxel

Camera Lidar

Multi-View Image

• BEVDet[1]

• BEVFormer[2]
• PointPillar[3] • PointRCNN[4]

• 3DSSD[5]

• PVRCNN[6]

• CenterPoint[7]

Good task performance!



Application	Challenges
• Application challenges of 3D Perception Methods
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Application Demands

• Low Latency: Perception 10~30FPS
• Low Power"Resource-constrained

Future Trends

• Larger-scale: Larger scene, more data

• Time Dimension: Process multiple

frames in point cloud video

• Multi-Modal: Process multiple modality Call for ~10x Efficiency Improvement

Efficiency of current methods

Nvidia Xavier Nvidia RTX2080

Method FPS

PointPillar[3] (Pillar-based) ~10

PointRCNN[4] (Point-
based)

~3

PVRCNN[6] (Voxel-based) ~3

Method FPS
PointPillar[3] (Pillar-based) ~60

PointRCNN[4] (Point-
based)

~8

PVRCNN[6] (Voxel-based) ~8

BEVDet[1] (Image-based) ~10

Our research goal is to accelerate the inference 
speed of the current 3D perception methods



Idea

• Exploit the Spatial Data Redundancy with Adaptive Inference
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Idea
3D detector needs to process large scale point cloud

Spatial redundancy exists for both the 3D and BEV space

Redundant background
points

(Only 5% nonzero pixels
projected from 3D voxels)

Redundant
background pixels

3D 2D

Oracle
Validate the spatial redundancy exists,

and correctly dropping redundant part

brings negligible performance drop.

Basline 30% 50% 70%

−3

−2

−1

0

Random Sample
Exclude GT-Box

Performance of oracle dropping

Drop Rate

AP

Δ AP

Negligible 
performan

ce loss

(* Upper bound for adaptive inference)



Idea

• Exploit the Spatial Data Redundancy with Adaptive Inference
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Idea
• Reduce spatial redundancy by adaptively skipping computation and saving for redundant

3D/2D features during inference.

• A share lightweight predictor could effectively identify redundant features for each layer.

3D Backbone 2D Backbone

Ada3D

Reduce
redundant 3D voxels

Ada3D

Reduce
redundant 2D pixels

Projection



Methods
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Predictor

Voxel

Subsampl
ed Voxel

Adaptive Inference
for 3D Voxel

Spatial Filtering

Predictor Score
𝑌#$%&

Density 𝒟

Importance
Criterion 𝒮

𝑭𝒑𝒓𝒆𝒅
𝑋+&

6𝑋+&

Adaptive Inference
for 2D BEV feature

Predicto
r

Density 𝒟

Spatial Filtering

Predictor Score
𝑌#$%&

𝑭𝒑𝒓𝒆𝒅𝑋$-

"𝑋$-

• Adaptive inference
• Feature-based Importance Predictor
• Density-guided Spatial Filtering

Local Point cloud have higher density



Methods

2023/8/29 NICS-efc Lab Page 73

• Sparsity-Preserving Batch Normalization
• Apply batch normalization for nonzero elements without mean substraction

conv1 conv2 conv3 conv4 conv5 deconv1

0

0.2

0.4

0.6

0.8

Baseline
SP-BN only
Ada3D

Sparse Rate of different methods

Layer Idx

Sp
ar

se
 R

at
e

5x Memory &
Compute Savings

Layer Name

Sparse Rate

Most existing literatures treat the 2D BEV
space as dense features

(Only 5% nonzero pixels
projected from 3D voxels)

SP-BN retains
the sparsity of 2D BEV features



Experimental Results

• Experiments on KITTI Test
• Ada3D achieves comparable performance with baseline methods with 5~10x FLOPs and memory

compress rate.
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Experimental Results

• Experiments on KITTI Val
• Ada3D-A: Improve the performance with 80% 2D reduction
• Ada3D-B: Without performance loss, reduce 40% 3D features, 80% 2D features, compress

FLOPs and memory cost by 5x
• Ada3D-C: With moderate performance loss, reduce 60% 3D features. 90% 2D features, improve

model FLOPs and memory by an order of magnitude
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Experimental Results

• Experiments on nuScenes and ONCE
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• With less than 1% mAP loss, compress the
FLOPs and memory cost by 2~4x

• Achieve higher compression rate with less
performance loss than model-level compression
methods (e.g. SPSS-pruning & Channel Scaling)

Outperform model-level compression methods



Qualitative Results

• Visualization of 2D & 3D heatmap
• The predictor identifies the voxels/pixels inside the bounding box
• The spatial filtering avoids dropping inbox data
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Predicted
Heatmap

Dropped
Input

Bounding
Boxes

Importance-Predictor:
(Filtered out boxes)

Predicted Heatmap

Inbox voxels have large predictor scores
(Red presents larger importance, Blue means lower)



Hardware Experiments

• Hardware Profiling on RTX3090 GPU
• Ada3D-B achieves 1.38x latency and 2.21x GPU (RTX 3090) peak memory optimization
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Centerpoint-KITTI (Ada3D-B) Centerpoint-KITTI (Ada3D-C) Centerpoint-NuSc (Ada3D)

No
rm

al
ize

d 
Co

st
 

2D 3D

3D Backbone 2D Backbone

Operational-level End-to-End

1.38
2.21

1.56
2.96

1.04
1.61

2.5x 8.5x



Summary
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E.g., Video Conference ~30FPS
Mobile Phone / PC (1~10 TOPS)

E.g., GPT-3: 175B, 664TOPs, 32s/seq
NVIDIA A100 (19.5 TFLOPS)

Real-time 
Requirement

High
Latency

NAS / 
Pruning 

Model
Quantization

Research Direction: Model Compression

How to 
efficiently search

How to 
controllably prune

How to 
efficiently quant

Low-level Vision
2x peak mem. reduce

Image Generation
2~5x speedup

3D Perception
1.38x speedup & 2.21x

peak mem. reduce

Apply to practical scenarios
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