
An Introduction to Quantization of Large Language Models

Xuefei Ning
Department of Electronic Engineering, Tsinghua University

2023/8/29

Menu

2023/8/29 NICS-efc Lab 2

1. Overview
2. Quantization
3. Summary of Researches & Demos

Large Language Model (LLM)

2023/8/29 NICS-efc Lab Page 3

• Most large language models are based on the Transformer architecture[1].
• A Transformer block consists of :

− Attention-Linear (generate matrix Q, K, V)
− Multi-Head Attention
− Feed Forward Network
− Layer Norm

• A typical LLM inference process:

[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Attention

Feed
Forward
Network

softmax
𝑸𝑲𝑻

𝒅𝒌
𝑽

where 𝑄,𝐾, 𝑉 ∈ 𝑅#×%

WQ WV

WO

Multi-head Self-Attention

WK

K Cache V Cache

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

Example of Decoder's word-by-word translation

Large Language Model (LLM)

2023/8/29 NICS-efc Lab Page 4

• Most large language models are based on the Transformer architecture[1].
• A Transformer block consists of :

− Attention-Linear (generate matrix Q, K, V)
− Multi-Head Attention
− Feed Forward Network
− Layer Norm

• A typical LLM inference consists of two stages:
− Prefill Stage: takes a prompt sequence to generate the

key-value cache
− Decode Stage: utilizes and updates the KV cache to

generate tokens one by one, where the current token
generation depends on all the previously generated
tokens

[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Attention

Feed
Forward
Network

softmax
𝑸𝑲𝑻

𝒅𝒌
𝑽

where 𝑄,𝐾, 𝑉 ∈ 𝑅#×%

WQ WV

WO

Multi-head Self-Attention

WK

K Cache V Cache

Add & LayerNorm

Add & LayerNorm

FC1

FC2

Activation

Q K V

1. Model scale: A large number of weights and computations

2. Architecture: Attention operation has quadratic complexity (computation & memory &
memory access) w.r.t. input token length

3. Decoding approach in inference: Generate tokens one by one (fully sequential)

Root causes of LLM’s slow inference or training

2023/8/29 NICS-efc Lab 5

𝑁

Computational/storage
complexity is Θ(𝑁&)

Attention overhead increases quadratically
with input token length

𝑁

𝑁

Let’s do some rough estimation to get some sense

l Memory requirements: solely storing all the

parameters on GPU HBM requires 15 * 3090
GPUs

l First-token latency: with 2048 input tokens, it

needs at least > 19 GPU seconds to generate

the first output token. (estimated using the peak

performance of 3090 GPU)

LLM Model:
GPT-3 (175B)

Computation: 663 TFLOPs
Storage: 350 GB (FP16)

RTX 3090 GPU
Mem. Capacity: 24 GB
Computing Capacity:

35.58 TFLOPS

Efforts towards more efficient LLM inference

2023/8/29 NICS-efc Lab 6

Structure
Design

Model
Compression

Inference
Engine

Serving
Framework

Model Scale

Attention
Operation

Decoding
Approach

Lower Latency Higher Throughput Lower Power
ConsumptionLower Storage

What algorithm
property? Cause what? Solutions

• Large computation
• Large memory access
• Large memory footprint

• Input-quadratic computation
• Input-quadratic memory access
• Input-quadratic memory footprint

• Low arithmetic intensity (i.e.,
computation / memory access)
cause under-utilization

• Varying length -> Dynamically
increasing KV cache cause
fragmented memory, increasing both
footprint and access

Efforts towards more efficient LLM inference

2023/8/29 NICS-efc Lab 7

Structure
Design

• Dynamic MoE
• Low-complexity attention
• Multi-query attention
• …

Model Scale

Attention
Operation

Decoding
Approach

Lower Latency Higher Throughput Lower Power
ConsumptionLower Storage

What algorithm
property? Cause what? Solutions

• Large computation
• Large memory access
• Large memory footprint

• Input-quadratic computation
• Input-quadratic memory access
• Input-quadratic memory footprint

• Low arithmetic intensity (i.e.,
computation / memory access)
cause under-utilization

• Varying length -> Dynamically
increasing KV cache cause
fragmented memory, increasing both
footprint and access

MoE
• Gshard (ICLR’21) [1]
• SwitchTransformers (JMLR’22) [2]
Low-complexity Attention
• Linformer (arXiv’20) [3]
• Performer (arXiv’20) [4]
Multi-query Attention
• Shazeer (arXiv’19) [5]

[1] Lepikhin, Dmitry, et al. "Gshard: Scaling giant models with conditional computation and automatic sharding." ICLR
(2020).
[2] Fedus, William, et al. "Switch transformers: Scaling to trillion parameter models with simple and efficient
sparsity." JMLR (2022).
[3] Wang, Sinong, et al. "Linformer: Self-attention with linear complexity." arXiv (2020).
[4] Choromanski, Krzysztof et al. “Rethinking Attention with Performers.” arXiv (2020).
[5] Shazeer et al. “Fast Transformer Decoding: One Write-Head is All You Need.” arXiv (2019)

Efforts towards more efficient LLM inference

2023/8/29 NICS-efc Lab 8

Model
Compression

• Quantization
• Weight sparsification
• Attention sparsification
• Other: structure factorization…

Model Scale

Attention
Operation

Decoding
Approach

Lower Latency Higher Throughput Lower Power
ConsumptionLower Storage

What algorithm
property? Cause what? Solutions

• Large computation
• Large memory access
• Large memory footprint

• Input-quadratic computation
• Input-quadratic memory access
• Input-quadratic memory footprint

• Low arithmetic intensity (i.e.,
computation / memory access)
cause under-utilization

• Varying length -> Dynamically
increasing KV cache cause
fragmented memory, increasing both
footprint and access

Quantization
• Smoothquant (ICML’23) [1]
• AWQ (arXiv’23) [2]
Weight / Attention Sparsification
• DynaBERT (NIPS’20) [3]
• Big Bird (NIPS’20) [4]

[1] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language
models." . ICML (2023)
[2] Lin, Ji, et al. "AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration." arXiv (2023).
[3] Hou, Lu et al. “DynaBERT: Dynamic BERT with Adaptive Width and Depth.” NIPS (2020)
[4] Zaheer, Manzil, et al. "Big bird: Transformers for longer sequences." Advances in neural information processing
systems 33 (2020)

Structure
Design

• Dynamic MoE
• Low-complexity attention
• Multi-query attention
• …

Efforts towards more efficient LLM inference

2023/8/29 NICS-efc Lab 9

Model
Compression

• Quantization
• Weight sparsification
• Attention sparsification
• Other: structure factorization…

Inference
Engine

• Graph and Operator
Optimization / Implementation

• Speculative decoding
• Memory Management

Model Scale

Attention
Operation

Decoding
Approach

Lower Latency Higher Throughput Lower Power
ConsumptionLower Storage

What algorithm
property? Cause what? Solutions

• Large computation
• Large memory access
• Large memory footprint

• Input-quadratic computation
• Input-quadratic memory access
• Input-quadratic memory footprint

• Low arithmetic intensity (i.e.,
computation / memory access)
cause under-utilization

• Varying length -> Dynamically
increasing KV cache cause
fragmented memory, increasing both
footprint and access

Graph/Operator Optimization
• Flash Attention (NIPS’22) [1]
• FasterTransformer [2]
Memory Management
• vLLM [3], lightLLM [4]

[4] Sensetime, https://github.com/ModelTC/lightllm, 2023
[5] Stern et al., “Blockwise parallel decoding for deep autoregressive models “, NeruIPS’18.

Structure
Design

• Dynamic MoE
• Low-complexity attention
• Multi-query attention
• …

[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in
Neural Information Processing Systems 35 (2022)
[2] NVIDIA, FasterTransformer, 2019
[3] UCB, https://github.com/vllm-project/vllm, 2023

Speculative decoding
• [5]

https://github.com/ModelTC/lightllm
https://github.com/vllm-project/vllm

Efforts towards more efficient LLM inference

2023/8/29 NICS-efc Lab 10

Model
Compression

• Quantization
• Weight sparsification
• Attention sparsification

Inference
Engine

• Graph and Operator
Optimization / Implementation

• Memory Management

Serving
Framework

Mainly throughput-oriented
• Split & Assignment & Schedule
• Multi-query/task Batching &

Caching

Model Scale

Attention
Operation

Decoding
Approach

Lower Latency Higher Throughput Lower Power
ConsumptionLower Storage

What algorithm
property? Cause what? Solutions

• Large computation
• Large memory access
• Large memory footprint

• Input-quadratic computation
• Input-quadratic memory access
• Input-quadratic memory footprint

• Low arithmetic intensity (i.e.,
computation / memory access)
cause under-utilization

• Varying length -> Dynamically
increasing KV cache cause
fragmented memory, increasing both
footprint and access

[3] Li, Conglong, et al. "DeepSpeed Data Efficiency: Improving Deep Learning Model Quality and Training Efficiency via
Efficient Data Sampling and Routing." arXiv (2022).
[4] UCB, https://github.com/vllm-project/vllm, 2023
[5] Sensetime, https://github.com/ModelTC/lightllm, 2023
[6] NVIDIA, Triton inference server, 2021.

Split/Assignment/Schedule
• FlexGen [1]
• Alpa [2]
• DeepSpeed [3]
Multi-query batching/caching
• vLLM [4], lightLLM [5]
• NVIDIA Triton [6]

[1] Sheng, Ying, et al. "High-throughput generative inference of large language models with a single
gpu." arXiv (2023).
[2] Zheng, Lianmin, et al. "Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep
learning." OSDI (2022).

Structure
Design

• Dynamic MoE
• Low-complexity attention
• Multi-query attention
• …

https://github.com/vllm-project/vllm
https://github.com/ModelTC/lightllm

Efforts towards more efficient LLM inference

2023/8/29 NICS-efc Lab 11

Inference
Engine

• Graph and Operator
Optimization / Implementation

• Speculative decoding
• Memory Management

Serving
Framework

Mainly throughput-oriented
• Split & Assignment & Schedule
• Multi-query/task Batching &

Caching

Model Scale

Attention
Operation

Decoding
Approach

Lower Latency Higher Throughput Lower Power
ConsumptionLower Storage

What algorithm
property? Cause what? Solutions

• Large computation
• Large memory access
• Large memory footprint

• Input-quadratic computation
• Input-quadratic memory access
• Input-quadratic memory footprint

• Low arithmetic intensity (i.e.,
computation / memory access)
cause under-utilization

• Varying length -> Dynamically
increasing KV cache cause
fragmented memory, increasing both
footprint and access

Lossy
model-level
techniques

Lossless
system-level
techniques

Structure
Design

• Dynamic MoE
• Low-complexity attention
• Multi-query attention
• …

Model
Compression

• Quantization
• Weight sparsification
• Attention sparsification
• Other: structure factorization…

Let’s zoom into quantization

• This tutorial focuses on a specific and important type of lossy model-level technique --
Quantization

2023/8/29 NICS-efc Lab 12

Quantization

S
1 8 23

Fp32 E M

S M
1 7

Int8

Menu

2023/8/29 NICS-efc Lab 13

1. Overview
2. Quantization
3. Summary of Researches & Demos

• We want lower latency, higher throughput, and other goods (e.g., lower power
consumption, fewer GPUs, etc.).

Two Procedures

Why Quantization & What is Quantization

2023/8/29 NICS-efc Lab 14

How Quantization Benefits Model Deployment

Lower Computational
Workload

Lower Memory Access

Lower Memory Storage

Lower Latency

Higher Throughput

Lower Power
Consumption

Lower Storage

• e.g., quantization speeds up the model inference*

* Relative speed-up w.r.t. FP32, tested on Tesla T4 GPU, input size 224x224

by
 b

at
ch

in
g

(Online Stage) Quantized Inference
• Low-Precision computation: LP arithmetic -> Requantization

• High-Precision computation: Dequant -> HP arithmetic -> (optional) Quant

(Offline Stage) Model Transformation
• Convert the FP weights into low-bit-width weights
• Determine the quantization parameters for activations (optional, if using low-

precision activation and not using online quant)

Quantization
Tool

FP32
Weights

INT8
Weights

int32int32
Conv Requan-

tization
Input
(int8)

Weights

int8

Bias

int16

Output
(int8)

ActivationAccumu-
lator

Formula & Basic Concepts of Quantization
• Quantization Formats

− An 8-bit machine number has 256 value choices, corresponding to 256 quantization levels.
− What actual value (i.e., quantization level) does each choice represent? -> Depends on quantization format and parameters.

2023/8/29 NICS-efc Lab 15

[1] Gholami, Amir, et al. "A survey of quantization methods for efficient neural network inference." arXiv preprint arXiv:2103.13630 (2021).

• The formula for converting FP weights to low-bit-width representation
− Uniform Quantization can be formulated as

Symmetric Quantization Asymmetric Quantization

Whether the representation range is symmetric with
respect to the origin

Uniform Quantization Non-uniform Quantization

Whether the quantization levels are evenly spaced

Quantized
value

Quantized
value

FP
value

FP
value

Formula & Basic Concepts of Quantization

2023/8/29 NICS-efc Lab 16

[1] Zhao, Ritchie, et al. "Improving neural network quantization without retraining using outlier channel splitting." International conference on machine learning. PMLR, 2019.

• Quantization Parameters
− Taking signed uniform quantization as an example, quantization parameters include

Scaling Factor (usually FP), Zero Point, Bitwidth

− For actual storage decrease and speed-up, a group of values needs to share the same quantization
parameters (the group size is called quantization granularity, e.g., tensor-wisely, channel-wisely).

• A key question of the offline quantization is to decide the parameters to properly balance representation
range and precision (i.e., balance clipping and rounding error).

L Large rounding error
(large scale factor)

L Large clipping error
(small scale factor)

J Well-balanced
(appropriate scale factor)

The Quantization Optimization Problem

2023/8/29 NICS-efc Lab 17

• Quantization is a lossy transform of neural networks.
Should trade-off between efficiency & task performance.

• The optimization problem of offline quantization:
− Objective:

• Minimize the performance loss
− Constraints:

• Hardware objectives / Proxy (e.g., bitwidth)
− Optimization Space:

• Quantization Formats
• Quantization Parameters
• Quantization Values

Optimization
Objective

Optimization
Space

Constraints

Acc (FP)

Quant

Acc (Quant)
Close the Gap

Minimize the Perf. Loss

Proxy (bitwidth)

Hardware
Format

Param.

Value

Quantization Workflow

2023/8/29 NICS-efc Lab 18

• Two quantization workflows suitable for different scenarios
−Post-Training Quantization (PTQ)

• Determine the quantization format, parameters, and values
for a pre-trained model. Do not need the original training
pipeline or full dataset.

• Need fewer data and time, Less accurate Suitable for
scenarios where training is prohibitive or data is scarce.

−Quantization-Aware Training (QAT)
• Let the model weights adapt to quantization error through

training. Training and dataset needed.
• Need more data and time, More accurate Suitable for

scenarios where the training budget is enough and data is
available / can be synthesized.

QAT
1. Before training: Insert fake quantizer
2. During training: Use Straight-Through
Estimator (STE) to calculate gradient

Quantization Techniques

2023/8/29 NICS-efc Lab 19

• Common techniques categorized by optimization subspace
−Quantization Formats[1,2,3,4]

• Non-uniform quantization (e.g., bf16, fp8, logarithm, other…)

−Quantization Parameters
• Bit-width: mixed-precision (e.g., HAWQ, HAQ) [5,6]

• Scaling factor & Zero point: learnable scale / zero-points (e.g., LSQ, LSQ++, ReactNet)[7,8]

− Quantization Value
• Value transformation: reparameterization, smart rounding (e.g., Stochastic, AdaRound)[9,10]

• Training techniques: advanced gradient estimators beyond STE in QAT[11]

[1] Kalamkar, D., et al. "A study of bfloat16 for deep learning training." arXiv preprint arXiv:2307.15337 (2023).
[2] Li, Y., et al. "Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks. " ICLR20.
[3] Zhong, K. et al. "Exploring the Potential of Low-bit Training of Convolutional Neural Networks." TCAD’22.
[4] Zhang, D. et al. "Lqnets:Learnedquantizationforhighlyaccurate and compact deep neural networks." ECCV’18.
[5] Dong, Z., et al. "Hawq: Hessian aware quantization of neural networks with mixedprecision." ICCV’19.
[6] Wang, K. et al. "Haq: Hardwareaware automated quantization with mixed precision." CVPR’19.
[7] Liu, Z. et al. "Reactnet: Towards precise binary neural network with generalized activation functions.” ECCV’20.
[8] Esser, S. et al. "Learned step size quantization." ICLR’20.
[9] Gupta, S. et al., “Deep Learning with Limited Numerical Precision” ICML’15.
[10] Nagel, M. et al. “Up or down? adaptive rounding for post-training quantization” ICML’20.
[11] Liu, Z. et al. "Bireal net: Enhancing the per formance of 1bit cnns with improved representational capability and advanced training algorithm.” ECCV’18.

Data Type Algo Perf.

FP16 68.6%

INT8 0.0%

Special Properties to Consider for Quantizing LLMs

• Special considerations for LLM quantization

2023/8/29 NICS-efc Lab 20

6𝜎 Value

Frequency

0−6𝜎 28𝜎

Frequency

Value6𝜎0−6𝜎 325𝜎

Outliers should be
taken into serious
consideration!

Data Type Algo Perf.

FP16 69.7%

INT8 69.7%

[1] Ning, X., et al. "Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding." arXiv preprint arXiv:2307.15337 (2023).
[2] Guo, Cong, et al. "OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization." ISCA (2023).

• Max Value!28𝜎
• Proportion of 6𝜎!0.05%

ResNet18

• Max Value!325𝜎
• Proportion of 6𝜎!0.2%

OPT-13B

(Algorithm) LLM weights have a wider dynamic range(Efficiency) Weight loading is the efficiency
bottleneck of the LLM generation (data from [1]) When keeping the dynamic range, the rounding error is not so

large that the quantized ResNet18 performs well, while the
rounding error is too large for the LLM. (data from [2]) − The decoding phase accounts for the major e2e

latency.

− Memory-bounded: During the decoding phase,
the GPU is under-utilized.

− Weight-loading-bounded: The amount of weight
loading is orders of magnitudes larger than
activation loading, especially when the decoding
length and batch size are not large.

0.1% utilization
w.r.t. the peak FP16 GPU perf.

LLM Quantization Techniques and Results

• LLM quantization related work

2023/8/29 NICS-efc Lab 21

Name Format Parameter Value Online Quantized Inference
Acceleration Performance

LLM.int8() (NIPS’22) [1] Uniform Range-preserving;
Mixed-precision Nearest rounding No 8/16-bit, No speedup

GPTQ (ICLR’23) [2] Uniform Range-preserving Smart rounding Fuse dequant & gemm W4A16, 2× speedup

LUT-GEMM (Arxiv’22) [3] Non-uniform Range-preserving Nearest rounding LUT-based dequant & kernel
fusion W3A16, 2.1x speedup

SmoothQuant (ICML’23) [4] Uniform Range-preserving Reparameterization
Nearest rounding INT8 Tensor Core W8A8, 1.56× speedup

Olive (ISCA’23) [5] Non-uniform Scale search
(reconstruction err) Nearest rounding New Tensor Core HW W4A4, 4.5× speedup

AWQ (Arxiv’23) [6] Uniform Scale search
(reconstruction err)

Reparameterization
Nearest rounding Fuse dequant & gemm W4A16, 1.85× speedup

NICSEFC (Ours) Uniform Mixed-precision;
Smart grouping

Reparameterization
Nearest rounding Fuse dequant & gemm W3A16, ? speedup

[1] Dettmers, Tim, et al. "Llm. int8 (): 8-bit matrix multiplication for transformers at scale." NIPS (2022)
[2] Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained
transformers." ICLR (2023)
[3] Gunho, Park, et al. nuqmm: Quantized matmul for efficient inference of large-scale generative
language models. arXiv, (2022)

[4] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large
language models." . ICML (2023)
[5] Guo, Cong, et al. "OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-
Victim Pair Quantization.”. ISCA (2023).
[6] Lin, Ji, et al. "AWQ: Activation-aware Weight Quantization for LLM Compression and
Acceleration." arXiv (2023).

Some Questions

• What ability loss does the quantization of different modules and tensors bring?
− A recent attempt to empirically quantify the quantization effect: [1]

• For acceleration, how should we further quantize the computation of LLM
− Application scenarios: Prefill, large batch-size inference, or training / tuning
− Hardware: those that support efficient low-bit computation, or specialized hardware design

• For peak memory optimization, to what extreme can we quantize the weights and KV
cache?

− Applicable scenarios: Long-sequence / large batch-size inference
− E.g., Dynamic quantization of KV cache?

2023/8/29 NICS-efc Lab 22

[1] Liu, Peiyu, et al. "Do Emergent Abilities Exist in Quantized Large Language Models: An Empirical Study." arXiv preprint arXiv:2307.08072 (2023).

Menu

2023/8/29 NICS-efc Lab 23

1. Overview
2. Quantization
3. Summary of Researches & Demos

Some of Our Past Work

2023/8/29 NICS-efc Lab Page 24

NAS /
Pruning

Model
Quantization

Research Direction: Model Compression

How to
efficiently search

How to
controllably prune

How to
efficiently quant

Low-level Vision
2x peak mem. reduce

Image Generation
2~5x speedup

3D Perception
1.38x speedup & 2.21x

peak mem. reduce

Apply to practical scenarios

• Structure Search
− [ECCV20] A Generic Graph-based Neural Architecture Encoding Scheme for

Predictor-based NAS
− [NeurIPS21] Evaluating Efficient Performance Estimators of Neural Architectures
− [ICML23] OMS-DPM: Deciding The Optimal Model Schedule for Diffusion

Probabilistic Model

• Pruning
− [FPGA17] ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA
− [ECCV20] DSA: More Efficient Budgeted Pruning via Differentiable Sparsity

Allocation
− [AAAI23] Memory-Oriented Structural Pruning for Efficient Image Restoration

• Quantization
− [FPGA16] Going Deeper with Embedded FPGA Platform for Convolutional Neural

Network
− [TCAD22] Exploring the Potential of Low-bit Training of Convolutional Neural

Networks

• Dynamic inference
− [ICCV23] Ada3D : Exploiting the Spatial Redundancy with Adaptive Inference for

Efficient 3D Object Detection

• Sparse Operator Design
− [DAC22] Heuristic Adaptability to Input Dynamics for SpMM on GPUs
− [MLSys23] Exploiting Hardware Utilization and Adaptive Dataflow for Sparse

Convolution in 3D Point Clouds

Some Past Demo on Efficient AIGC – Efficient LLM

2023/8/29 NICS-efc Lab 26

Project website: https://sites.google.com/view/sot-llm

• Data-level optimization: New possibilities for efficiency improvements in the LLM era!
− Different from model-level and system-level techniques, we demonstrate the potential

of “data-level content organization” for decreasing the end-to-end latency
− Vicuna-7B on A100, 2.1x end-to-end acceleration

https://sites.google.com/view/sot-llm

Some Past Demo on Efficient AIGC – Efficient Diffusion

2023/8/29 NICS-efc Lab 27

• Schedule/Model-level optimization
− Leverage off-the-shelf models with different sizes or weights at different time steps
− LoRA finetuned (based on SD 1.5) on A100, 2x end-to-end acceleration

Project website: https://sites.google.com/view/oms-dpm/ In ICML’23.

This demonstrated speedup also
includes TensorRT’s operator
fusion and selection

https://sites.google.com/view/oms-dpm/

NICS-efc Lab 28

Thanks!

2023/8/29

Researchers and Engineers Wanted!
• No matter whether you’re an application dreamer, a DL practitioner, a software geek, or a

hardware fever.
• No matter whether you’re interested in how humans and AI “think” or how to enable AI to

create perceptual assets.

If you’re interested in making AIGC more efficient, welcome to join us on efficient AIGC projects!
• For research at NICS-EFC lab@Tsinghua, email Prof. Yu Wang and Dr. Xuefei Ning for discussion.

foxdoraame@gmail.com Dr. Xuefei Ning
yu-wang@tsinghua.edu.cn Prof. Yu Wang

mailto:foxdoraame@gmail.com
mailto:yu-wang@tsinghua.edu.cn

