
Neural Architecture Search and
Architecture Encoding

Xuefei Ning Email: foxdoraame@gmail.com

NICS-EFC Lab, EE, Tsinghua University
Lab Leader: Yu Wang yu-wang@tsinghua.edu.cn

2022/11/24

2022/11/24

mailto:foxdoraame@gmail.com
mailto:yu-wang@tsinghua.edu.cn

Menu

2022/11/24 2

1. Basics
2. Field Summary: Questions and Development

a) What to Search
b) How to Search
c) What Can Search Tell Us

3. Our Work: Utilizing Architecture Encoding to
Answer “How to Search”

4. Summary

Menu

2022/11/24 3

1. Basics
2. Field Summary: Questions and Development

a) What to Search
b) How to Search
c) What Can Search Tell Us

3. Our Work: Utilizing Architecture Encoding to
Answer “How to Search”

4. Summary

Neural Architecture Matters

• Neural architecture matters for task performance, hardware efficiency, and so on.

• Extensive expert efforts have been devoted to developing new architectures, pushing
forward the wide application of NN.

2022/11/24 4

Task Performances

Hardware Efficiency

• Classification Accuracy
• Detection mAP
• Segmentation IoU
• …

• #Parameter / #FLOPs
• Latency
• Energy
• …

AlexNet (2014)
#Param: 61M
#FLOPs: 7.1E8

56.5%

ResNet (2016)
#Param: 25M
#FLOPs: 4.0E9

76.1%

DenseNet (2017)
#Param: 8M

#FLOPs: 2.9E9
74.7%

VGG (2015)
#Param: 143M
#FLOPs: 7.6E9

71.5%

SqueezeNet (2016)
#Param: 1M

#FLOPs: 8.2E8
58.2%

ShuffleNetV2 (2018)
#Param: 2M

#FLOPs: 1.5E8
69.4%

GhostNet (2020)
#Param: 7.3M
#FLOPs: 2.3E8

75.7%

MobileNet (2016)
#Param: 4.2M
#FLOPs: 2.8E8

70.6%

From Manual Design to Automated Design

• Varying tasks and hardware may need different architectures

• Need to consider multiple objectives or constraints in the meantime

2022/11/24 NICS-efc Lab

Varying Tasks Varying Hardware

A100
GPU

Versal
ACAP

TPU
v3

NVIDIA
Xavier GPU

TI
TDA4 ASIC

Xilinx
ZU11 FPGA

Neural
Architecture

Purely Manual Design

Expensive/Suboptimal

5

We need automated architecture design!

Neural Architecture Search (NAS)

• Basic Problem Definition
− Architecture 𝑎; Search space 𝑆; Network parameters 𝑤
− Valid task perf 𝑅!"#; Train task loss 𝐿$%"&'; Complexity function 𝐹; Budget 𝐵

• A black-box optimization problem => Using “search” to solve

• Three components in search:
− Search space: Set of all possible architectures
− Search strategy: Explore the search space and sample candidate architectures
− Evaluation strategy: Evaluate the performances of candidate architectures

2022/11/24 6

Search Space Search
Strategy

Evaluation
Strategy

Sample
Architecture

Architecture

Performances

min
!∈#

𝑅$!% 𝑤∗ 𝑎 , 𝑎
s.t. 𝑤∗ 𝑎 = argmin' 𝐿()!*+(𝑤, 𝑎)

𝑭 𝑎 ≤ 𝑩

Inner optimization: Embeds
the optimization for 𝑤

Constraints: #Param, #FLOPs, latency, energy, …

Neural Architecture Search (NAS)

• A minimal search space example
− Search space: Set of architectures; Cartesian product of decisions
− Architecture
− Decision: Set of choices
− Choice

2022/11/24 7

Conv1 Conv2 Conv3

The 𝑖-th Conv has two operation parameter decisions:
#channel: 𝑑!" = {32, 64, 128} [3 choices]
Kernel size: 𝑑!# = {1, 3, 5} [3 choices]

The search space can be represented as
the Cartesian product of all 7 decisions:

𝑆 = 𝑑$×< 𝑑!"×𝑑!# ; |𝑆|=1458

Each element in 𝑆 describes an architecture.
Deciding the choice for all decisions yields an
architecture.

A topological decision: whether this connection exists: 𝑑$ = {0, 1} [2 choices]

Menu

2022/11/24 8

1. Basics
2. Field Summary: Questions and Development

a) What to Search
b) How to Search
c) What Can Search Tell Us

3. Our Work: Utilizing Architecture Encoding to
Answer “How to Search”

4. Summary

Menu

2022/11/24 9

1. Basics
2. Field Summary: Questions and Development

a) What to Search
b) How to Search
c) What Can Search Tell Us

3. Our Work: Utilizing Architecture Encoding to
Answer “How to Search”

4. Summary

What to Search

• Which decisions’ choice matters for performance/objectives (including task performance
& hardware efficiency & ...)?
−Topology: Connection pattern, depth
−Feature size: #Channels (width), #Spatial size (resolution)
−Operation type
−Operation parameters: conv kernel size, conv group number, …

• Types of search spaces
−Topological: Macro, Micro, Hierarchical
−Hardware-friendly (Non-topological, Non-micro)
−Extension:
• Outside of architecture: Other components in the DL pipeline
• Outside of DL

2022/11/24 10

Topological Search Spaces: Macro

2022/11/24 11

Google Brain: Neural Architecture Search with Reinforcement Learning[Zoph et al., 2017]

• Macro search space
• Skip connections
• Filter width/height/number, stride height/width

• Results: error rate of 3.65% on CIFAR-10
• Inefficient: Search space size: 3.9× 10@A; Search cost ~22.4k GPU days

Zoph et al., “Neural architecture search with reinforcement learning”, ICLR’17.

Topological Search Spaces: Micro

2022/11/24 12

Google Brain: Learning Transferable Architectures for Scalable Image Recognition[Zoph et al.,
2018]

• Cell-based (micro) search space (NASNet search space) to reduce the space complexity
while keeping the space containing well-performing architectures
• Repeat: stacking together more copies of this cell, each with its own parameters

• Results: 2.4% error rate on CIFAR-10; 82.7% top-1 accuracy on ImageNet
• More Efficient than NAS-RL: Search space size: 5.2 × 10AA; Search time ~2k GPU days

Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR’18.

Stack of Normal cell & Reduction cell

Hardware-friendly Search Spaces

• More friendly to efficiency objectives (better task performance - efficiency trade-off

• MNasNet[Tan et al., 2019]

2022/11/24 13

• Stage-wise space with non-topological decisions
• More layer diversity than cell-based NASNet space,

important for efficiency

NASNet
NASNet

NASNet

Better efficiency-task performance trade-offs than cell-based spaces (NASNet)
Tan et al., “MnasNet: Platform-Aware Neural Architecture Search for Mobile”, CVPR’19.

AutoDL other than NAS or Outside of DL

• Other components in the DL pipeline besides architectures

• More ambitious[Real et al., 2020]: Jump out of the DL paradigm to discover novel things. E.g.,
can we discover things like “back-propagation” or “SGD”

2022/11/24 14

Task

Hardware

DL Algo

AutoAug
[Cubuk et al., CVPR’19]

HPO
[Snoek et al., NIPS’12]

…

Training Process Label

Output

Loss Function

Dataset

NAS
[Zoph et al., ICLR’17]

AutoLoss
[Li et al., ICLR’21]

Cubuk et al., “Autoaugment: Learning augmentation strategies from data”, CVPR’19.
Snoek et al., “Practical bayesian optimization of machine learning algorithms”, NeurIPS’12.
Zoph et al., “Neural architecture search with reinforcement learning”, ICLR’17.
Li et al., “Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation”, ICLR’21.
Real et al., “Automl-zero: Evolving machine learning algorithms from scratch”, ICML’20.

Menu

2022/11/24 15

1. Basics
2. Field Summary: Questions and Development

a) What to Search
b) How to Search
c) What Can Search Tell Us

3. Our Work: Utilizing Architecture Encoding to
Answer “How to Search”

4. Summary

• Challenges
− Large search space: Need to evaluate many architectures to explore sufficiently
− Costly vanilla evaluation: The evaluation of each architecture is costly

Target: Efficient Search

2022/11/24 16

Train On
Train Set

Test On
Valid Set

Arch
Space

Model: Arch + Parameters

Arch Score
(e.g., Accuracy)

2. The vanilla evaluation is costly
1. The search space is usually large

Work Search space size #Evaluated architectures #Train epochs #GPU day
NASRL [Zoph et al., 2017] 3.9× 10!" 12.8k 50 800x28d=22.4k

NASNet [Zoph et al. 2018] 5.2 × 10"" 20k 20 500x4d=2k

AmoebaNet-A [Real et al. 2019] 3.1× 10#$ 20k 25 450x7d=3.2k

Zoph et al., “Neural architecture search with reinforcement learning”, ICLR’17.
Zoph et al., “Learning Transferable Architectures for Scalable Image Recognition”, CVPR’18.
Real et al.., “Regularized Evolution for Image Classifier Architecture Search”, AAAI’19.

Directions for Efficient Search

2022/11/24 17

1. Improve the sample efficiency
of the search strategy

Standalone Training
on Train Set

Low Efficiency

3. Accelerate the evaluation
strategy

2. Factorize or partition the search
space to reduce space complexity.

𝑆" = 𝑑" 𝑆# = 𝑑#×𝑑% 𝑆"

𝑆#

Direction 1: Improve the sample efficiency of search strategy

• How to sample new architectures given evaluated architectures and their rewards?
Decrease #architectures that need to be evaluated before finding a well-performing one.

− Search strategy types

− The search strategy design should consider two aspects that influence the sample efficiency
• Exploitation: Exploiting the already evaluated information (experiences) to sample promising architectures, i.e.,

avoid sampling expectedly poor-performing ones
• Exploration: Avoid getting stuck in local optima; Sample uncertain architectures (whose evaluations are informative)

2022/11/24 18

PG/PPO

Optimize

Reinforcement Learning[Zoph et al., 2017]

• RL to learn the sampler from past experiences
• Use the sampler to sample new candidates

Local Search[Real et al., 2019]

Mutate /
Crossover

Sample new candidates by
applying local mutations /
cross-overs on past candidates

Predictor-based[Luo et al., 2018]

Inner Search

Predictor Predicted
score

• Learn a predictor from past experiences
• Predict performances of unseen

architectures and sample new candidates

Zoph et al., Neural Architecture Search with Reinforcement Learning, ICLR’17.
Real et al., Regularized evolution for image classifier architecture search, AAAI’19.
Luo et al., Neural architecture optimization, NeurIPS’18.

Direction 1: Improve the sample efficiency of search strategy

• How to sample new architectures given evaluated architectures and their rewards?
− Exploitation of past experiences: Exploiting the already evaluated information (experiences) to

sample promising architectures, i.e., avoid sampling expectedly poor-performing ones
• Local Search method: Mutate from well-performing architectures in past experiences
• Reinforcement Learning method: Learn the sampler from past experiences
• Predictor-based / Bayesian Optimization method: Learn the predictor from past experiences

− Exploration of unknown areas: Avoid getting stuck in bad local optima; Explore uncertain
architectures (whose evaluations are informative)

• Local Search method: Population sample & update design
• Reinforcement Learning method: 𝜖-greedy exploration
• Predictor-based / Bayesian Optimization method: Acquisition function design

2022/11/24 19

Example of enhancing exploitation: Predictor-based NAS

• Predictor-based NAS

• Typical parametric predictor construction

2022/11/24 20

Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20.

Current
best acc

#Archs evaluated by oracle evaluator

Example plot of
sample efficiency

Enhancing Exploitation
“Trained with the same set of true perf.
data, how can we get accurate
predictions for unseen architectures?”

arch1 arch2

arch3

Arch.
Encoder

Arch DAG
(directed acyclic graph) Arch embeddings

True perf.

Pred perf.

Losses

Update parameters

Should mind 2 aspects
• How to encode
• How to train
We’ll cover it later!

The predictor’s fitness is vital to the predictor-based searcher’s sample efficiency
Exploitation

Exploitation & Exploration

Example of enhancing exploration: Aging evolutionary

• Modify the population update strategy in the evolutionary (local search) method

2022/11/24 21

Real et al.., “Regularized Evolution for Image Classifier Architecture Search”, AAAI’19.

1. Choose parent
1. Randomly select a parent pool with size

S from population
2. Choose the highest-accuracy model in

parent pool as parent
2. Mutate parent to get arch
3. Evaluate arch
4. Population update

1. Add arch into population
2. Eliminate the oldest arch in population

Mutation in NASNet search space

Exploration

Exploitation

Exploration: Aging evolution encourages exploration
by avoiding “zooming in on good models too early”.
Forced to pay attention to architectures rather than
models: architecture should retrain well.

Direction 2: Reduce the search space complexity

• Factorize (exponential complexity decrease) or partition (linear complexity decrease)?

• If factorize, how to evaluate partial architecture?

• How to orchestrate the search in different space factors & partitions?

2022/11/24 22

Original space 𝑆 = 𝑑"× 𝑑# × 𝑑%

𝑑": 𝑐"" 𝑐"#, 𝑐"%, 𝑐"&

𝑑#: 𝑐#" 𝑐##, 𝑐#%, 𝑐#&

𝑑%: 𝑐%" 𝑐%#, 𝑐%%, 𝑐%&
Factorize

𝑆"

𝑆#

Partition𝑆" 𝑆#

𝑆" = 𝑑" 𝑆# = 𝑑#×𝑑%

Search in 𝑆.
𝑆 = 𝑆! × 𝑆"

• Search in 𝑆!
• Search in 𝑆"

Factorization[Liu et al., 2018]

• Search in S! = 𝑑!"! ×𝑑#!
• Search in 𝑆" = 𝑑!"" ×𝑑#"

Search in 𝑆. 𝑆 = 𝑑!"×𝑑# = (
)

𝑑!"! +
𝑑!"" × 𝑑#! + 𝑑#" ≈ 𝑑!"! ×𝑑#! + 𝑑!"" ×𝑑#"

FactorizePartition[Ci et al., 2021][Guo et al., 2020]

𝑆"

𝑆#

Liu et al., “Progressive Neural Architecture Search”, ECCV’18. Ci et al., “Evolving Search Space for Neural Architecture Search”, ICCV’21.
Guo et al.., “Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search”, ICML’20.

Direction 3: Accelerate the evaluation strategy

• How to get the parameters of an architecture?
− Standalone: Standalone train from scratch[Zoph et al., 2017]

− Morphism: Inherit from parents & finetune, (used in conjunction with local search method, e.g.,
evolutionary)[Cai et al., 2018]

− One-shot: Amortize the parameter training costs of multiple architectures
• SuperNet-based: Share parameters in one SuperNet with other architectures[Pham et al., 2018]

• HyperNet-based: Generate parameters using one HyperNet for all architectures[Brock et al., 2018]

− Zero-shot: Randomly initialize parameters[Abdelfattah et al., 2021]

2022/11/24 23

Zoph et al., "Neural architecture search with reinforcement learning. " ICLR’17.
Pham et al., "Efficient Neural Architecture Search via Parameters Sharing." ICML’18.
Cai et al., "Efficient architecture search by network transformation." AAAI’18.
Brock et al., "Smash: one-shot model architecture search through hypernetworks." ICLR’18.
Abdelfattah et al., Zero-cost proxies for lightweight NAS, ICLR’21.

A widely recognized trade-off between the “accuracy” and
“efficiency” of evaluation strategy: Overly strong proxy of getting

parameters (excessive parameter sharing, zero-shot) results in
inaccurate evaluation, and thus suboptimal search results.

One-shot Evaluation (Sharing parameters)

2022/11/24 24

Pham et al., "Efficient Neural Architecture Search via Parameters Sharing." ICML’18.
Bender et al. "Understanding and Simplifying One-Shot Architecture Search." ICML’18.

• Parameter sharing technique[Pham et al., 2018][Bender et al., 2018]

− Construct the SuperNet: Construct an over-parametrized network called SuperNet, containing the
parameters needed by all the architectures in the search space

− Train the SuperNet: Randomly sample architectures, and train the corresponding parameter subset in
the SuperNet

− Evaluating Candidates: Evaluate architectures using the corresponding subset of SuperNet parameters,
without separate training the parameters for each candidate

Parameters are shared between many architectures
E.g., Conv 1x1 shared between architectures
• 1x1 -> 3x3 -> MaxPool
• 1x1 -> 5x5 -> MaxPool

Conv 1x1
Conv 3x3

Conv 5x5

MaxPool

Zero-shot Evaluation (Randomly initialized parameters)

• One-Shot Evaluators avoid separately training each architecture. Instead, the training
costs of all architectures are amortized into the cost of training ONE SuperNet

2022/11/24 25

Can we further reduce the training cost to ZERO?
Zero-Shot Evaluators

Abdelfattah et al., “Zero-cost proxies for lightweight NAS”, ICLR’21.
Mellor et al., “Neural architecture search without training”, arXiv:2006.04647v1, 2020.
Mellor et al., “Neural architecture search without training”, ICML 2021.

Parameter-level ZSEs[Abdelfattah et al., 2021] measure
the architecture’s score by adding up
parameter-wise sensitivity measures

e.g. 𝑆(𝛼)= ∑ '(
')
𝜃 add up parameter-

wise sensitivities of all parameters

randomly
initialized

Loss 𝐿

𝜃
𝑥!, … 𝑥"

Architecture-level ZSEs[Mellor et al., 2020, 2021] measure
the architecture’s score (discriminability) by
inference differences between input images.

jacob_cov 𝛼 = 𝑓(
𝜕𝐿
𝜕𝑥!

, … ,
𝜕𝐿
𝜕𝑥"

)

[Mellor, et al., arXiv 2020]
input gradients difference of different inputs

Quality of These Proxy Efficient Evaluators?

2022/11/24 26

One-shot and Zero-shot Evaluators (OSEs and ZSEs) are efficient.
Are current OSEs and ZSEs powerful enough for evaluating

architectures on various search spaces?
How are the OSE and ZSE scores correlated
with the architectures’ true ranking?

What architectures do they
overestimate or underestimate?

Is there a general ZSE that is powerful on
different types of search spaces.

What should we do to further improve
OSEs and ZSEs?

Our Work at NeurIPS’21

Evaluating Efficient Performance
Estimators of Neural Architectures
Introduction
Researchers have developed efficient performance estimators of neural
architectures for more efficient NAS. One-shot estimators (OSEs)
estimate architecture performances using parameters in a shared
“super-net”. Zero-shot estimators (ZSEs) estimate architecture
performances using randomly initialized parameters.

Xuefei Ning1, Changcheng Tang2, Wenshuo Li1, Zixuan Zhou1,
Shuang Liang2, Huazhong Yang1, Yu Wang1

1Tsinghua University, 2Novauto Technology Co. Ltd.

OSE ZSE

A thorough study on the ranking
quality of OSEs and ZSEs is missing.

Ranking Quality

1
2
3
4
5
6

Ground-Truth (GT)
Ranking

OSE / ZSE
Ranking

1

2

3
4

5

6

NAS-Bench-1shot1 (NB101)
SS size: 14.6K

Op on node

NAS-Bench-301 (NB301)
SS size: 1018

Large SS size, small GT differences

NAS-Bench-201 (NB201)
SS size: 15.6K

Many isomorphic architectures

Our work aims at providing a thorough study on the quality of current
efficient performance estimators.
• Targets: OSEs and eight types of ZSEs.
• Aspects:

• Benchmarks: Five benchmarks with distinct sizes and properties.

• Kendall’s Tau & SpearmanR: Overall ranking correlation.
• P@top / bottom K & Best / WorstRanking@K: Distinguishing

ability of top or bottom architectures.
• Bias: Which architectures are over- or under-estimated?
• Variance: How rankings vary w.r.t. random factors?

NDS ResNet & NDS ResNeXt-A
SS size: 1.3M / 11.4M

Non-topological SS

+depth+width

What Does This Work Provide
Diagnosis toolset: Criteria and methods for analyzing the
behavior of architecture performance estimators

Knowledge: Observations (some with explanations) about
OSEs’ and ZSEs’ behaviors on different SSes

Suggestion: Application practices and research directions

Check Our Code at
https://github.com/walkerning/aw_nas

OSE Diagnosis

OSE Improvements

ZSE Diagnosis

• Ranking quality keeps increasing while training.
Longer one-shot training helps.

• Distinguish bottom architectures relatively well
(P@top 5% < P@bottom 5%). Can be used to
prune bad architectures or warm-up sample-
based NAS.

Criteria Trend

Bias Diagnosis
Improper sampling distribution causes biases towards certain architectures.
1. Some architectures need higher sampling probability to match their

relative performance in standalone training.

2. Architectures are sampled from an unfair distribution, where some have
undesirable higher equivalent probabilities.

NB201

Variance Diagnosis

Epochs

Ranking StabilityAccuracy Forgetting

Epochs

The random sample training scheme causes temporal variances.

Large
Archs

• Complexity-level: Under-estimate larger
architectures.

• Architecture-level: Over-estimate
architectures in larger isomorphic groups.Rank 2nd in the search space (SS)

Three directions of improving OSEs, some working techniques! See our
paper for more details!
1. Improving stability of OSE estimations to reduce temporal variances.

2. Improving the fairness of OSE sampling to reduce biases.

3. Intuitively, reducing the sharing extent of OSE might help.ok

Temporal Parameter Ensemble

De-Isomorphic Sampling

One-shot SS Pruning

Criteria Comparison

Bias Diagnosis (Rank-1st architecture)

• ZSEs cannot surpass the ranking qualities of #FLOPs or #Param.
• The best ZSE is different across SSes.
• Architecture-level ZSEs get good overall correlation on topological SSes.
• Current ZSEs have poor P@topKs.

Discuss with us by submitting issues or e-mailing
foxdoraame@gmail.com

P@
to

p
5%

Some parameter-level ZSEs prefer
linear architectures without skip
connection (prefer gradient explosion).

Current ZSEs have prominent and improper biases.

jacob_cov / relu_logdet prefer small
kernel sizes (e.g., 1x1 over 3x3).

Ke
nd

al
l’s

 T
au

Parameter-level ZSEs Architecture-level ZSEs

2022/11/24 27
Ning et al., “Evaluating Efficient Performance Estimators of Neural Architectures”, NeurIPS’21.

Observations in this paper motivate our follow-up research
• Parameter sharing extent should be reduced
• Parameter sharing pattern should be improved
• Current ZSEs have prominent biases and cannot work well in all

search spaces
• The best ZSE is different across search spaces

(Review) Directions for Efficient Search

2022/11/24 28

1. Improve the sample efficiency
of the search strategy

Standalone Training
on Train Set

Low Efficiency

3. Accelerate the evaluation
strategy

2. Factorize or partition the search
space to reduce space complexity.

𝑆" = 𝑑" 𝑆# = 𝑑#×𝑑% 𝑆"

𝑆#

Menu

2022/11/24 29

1. Basics
2. Field Summary: Questions and Development

a) What to Search
b) How to Search
c) What Can Search Tell Us

3. Our Work: Utilizing Architecture Encoding to
Answer “How to Search”

4. Summary

• Instead of returning an architecture, it can be useful for NAS to return:

What does NAS Return: Architecture, Pareto, Choice Rules

2022/11/24 30

Different hardware
Different budget

Dynamic budget

Arch1

Arch2

Arch3

ob
je

ct
iv

e1

objective2

Pareto Curve: Multiple architectures to achieve
Pareto Perf[Elsken et al., 2018][Cai et al., 20][Dey et al., 2022]

Elsken et al., “Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution”, ICLR’19.
Cai et al., “Once for All: Train One Network and Specialize it for Efficient Deployment”, ICLR’20.
Dey et al., Neural Architecture Search Tutorial Part2, AutoML’22.
Radosavovic et al., “Designing Network Design Spaces”, CVPR’20.
Ru et al., “Interpretable Neural Architecture Search via Bayesian Optimization with WL Kernels”, ICLR’21.

Choice Rules: Rules of decision choices to achieve good perf

Easy interpretability for human:
Choice rules are low-dimensional constraints that can “efficiently”

describe a large sub-space of architectures

NASBOWL [Ru et al., 2021][

extracts topology structure
RegNet[Dey et al., 2022] extracts

choice relationship
between decision

Easy deployment
for varying budgets
/ hardware

History

2022/11/24 31

Zoph@Google, ICLR’17
Neural Architecture Search
with Reinforcement Learning

2017 2018 2019 2020 2021

Zoph@Google, CVPR’18
NASNet
More compact cell-based
micro search space design

2022

Ying@Google&UFreiburg, ICML’19
NAS-Bench-101
The first NAS benchmark

Mehta@UFreiburg&Abacus&BCAI, ICLR’22
NAS-Bench-Suite
A collection of NAS Benchmarks

Tan@Google, CVPR’19
MNasNet
Hardware-aware search
with tailored search space design

Cai@MIT ICLR’20
Once-for-all
One-shot NAS for multiple hardware

Yang@UND, DAC’20
Co-exploration ASIC and NAS

Real@Google, AAAI’19
AmoebaNet Regularized evolution controller

Luo@MSRA, NIPS’18
NAO
Predictor-based NAS
controller

Ning@Tsinghua&Tencent, ECCV’20
GATES Improving predictor-based controller

NAS Efficiency Improvement
Hardware-Aware, Co-Exploration

Search Space Analysis & Auto Design
Benchmark

Radosavovic@FAIR, ICCV’19
NDS evaluating search spaces

Radosavovic@FAIR, CVPR’20
RegNet Auto design of non-topological search space

Xie@FAIR, ICCV’19
Randomly Wired NN analyzing search spaces

Pham@Google, ICML’18
ENAS
One-shot evaluation

Ning@Tsinghua&Novauto, NIPS’21
Evaluating Efficient Estimation Strategies
Analyze one-shot / zero-shot evaluation

Zhao@WPI&UBrown&FAIR, ICML’21
Few-shot NAS
Improving one-shot evaluation

Abdelfattah@Samsung, ICLR’21
Zero-cost proxies
Zero-shot evaluation w.o. training

Zhou@Tsinghua, ECCV’22
CLOSE
Improving one-shot evaluation

Liu@DeepMind & CMU, ICLR’19
DARTS Differentiable NAS controller

Menu

2022/11/24 32

1. Basics
2. Field Summary: Questions and Development

a) What to Search
b) How to Search
c) What Can Search Tell Us

3. Our Work: Utilizing Architecture Encoding to
Answer “How to Search”

4. Summary

Menu

• Utilizing Architecture Encoding for Efficient and Accurate Search

• How to Encode: GATES@ECCV’20, TA-GATES@NeurIPS’22

• How to Learn the Encoder: GATES@ECCV’20, CLOSE@ECCV’22, DELE@AAAI’23

2022/11/24 33

Menu

• Utilizing Architecture Encoding for Efficient and Accurate Search

• How to Encode: GATES@ECCV’20, TA-GATES@NeurIPS’22

• How to Learn the Encoder: GATES@ECCV’20, CLOSE@ECCV’22, DELE@AAAI’23

2022/11/24 34

Review: Two Basic Challenges in “How to Search”

2022/11/24 35

Training on
Train Set

Evaluation: How to get the parameters

Standalone
Training

Parameter-Sharing
Training

Conv 1x1
Conv 3x3

Conv 5x5

MaxPool

Shared
Between Archs

Standalone-Trained
Parameters Low Efficiency

Low Quality

Cannot guarantee efficiency and
quality in the meantime

How to improve the quality of
parameter-sharing evaluation?

Large search space
Efficient exploration?

Our Major Idea

2022/11/24 36

Utilize the learnable encoding of architecture to accelerate
exploration and improve the quality of evaluation

Architecture-level
Encoding

Accelerate Exploration
Which architectures

are promising and need
explore

Operation-level
Encoding

Improve Evaluation
Which operations

to share parameters

Architecture
Encoder

Then, how do we get a good architecture encoding?
• How to encode?
• How to learn the encoder?

Menu

• Utilizing Architecture Encoding for Efficient and Accurate Search

• How to Encode: GATES@ECCV’20, TA-GATES@NeurIPS’22

• How to Learn the Encoder: GATES@ECCV’20, CLOSE@ECCV’22, DELE@AAAI’23

2022/11/24 37

• Predictor-based NAS

GATES: Background

2022/11/24 38

“Trained with the same set of true perf. data, we want to get more
accurate predictions for unseen architectures.”

Current
best acc

#Archs evaluated by oracle evaluator

Example plot of
sample efficiency

The predictor’s fitness is vital to the predictor-based searcher’s sample efficiency

arch1 arch2

arch3

Arch.
Encoder

Arch. Latent space

True perf.

Pred perf.

Losses

Update parameters
Typical parametric predictor construction

Improvements from 2 aspects
• Arch. encoder
• Training loss

• Arch. Encoder

GATES: Existing Methods

2022/11/24 39

Sequence-based encoder [Luo et al. NIPS 2018]
Not suitable for handling DAGs

An architecture and its isomorphic counterparts
can have multiple different encodings

GCN-based encoder [Guo et al. NIPS 2019, Shi et al. 2019]
Not suitable for handling data-processing DAG (NN architecture)

Existing GCN encoder models the operation (Conv, Pooling) as the propagated information
on the graph. The aggregation method does not intuitively match the node/edge semantics

of data-processing DAG

RNN MLP

• Arch. Encoder

• Training loss

GATES: Existing Methods

2022/11/24 40

Sequence-based encoder [Luo et al. NIPS 2018]
Not suitable for handling DAGs

An architecture and its isomorphic counterparts
can have multiple different encodings

RNN MLP

What is important in NAS is the relative ranking order of architectures, not the absolute score
• Regression loss: make predicted score P(𝑎*) close to true performance 𝑦*

L is not a good surrogate of the ranking measures

GCN-based encoder [Guo et al. NIPS 2019, Shi et al. 2019]
Not suitable for handling data-processing DAG (NN architecture)

Existing GCN encoder models the operation (Conv, Pooling) as the propagated information
on the graph. The aggregation method does not intuitively match the node/edge semantics

of data-processing DAG

GATES
• Improve Encoder and Training losses

− A more generic Graph-based neural ArchiTecture Encoding Scheme (GATES)
• Mimic the information propagation in the architecture to encode it

− Learning to Rank (LtR) losses (Relative order matters rather than absolute perf.)
• Ranking Losses are better surrogate of ranking measures than regression losses

2022/11/24 41

GATES

OutIn

Conv
1x1

Conv
3x3

Max
Pool

Input virtual info.

⨀

⨀

⨀

“virtual info.”

Attention masks of different ops

Info. propagation

0

1

2

3 4

• feature map computation: F2=Conv3x3(F0 + F1)
• “Virtual info transformation” during architecture encoding: N2=𝑚#⨀ (N0+N1)
𝑚# = σ EMB%&'(")"W* is the attention mask of Conv3x3

2022/11/24 42

• Operation modeled as the information
to be propagated on the graph

GCN

OutIn

Conv
1x1

Conv
3x3

Max
Pool

GATES

OutIn

Conv
1x1

Conv
3x3

Max
Pool

Input virtual info.

⨀

⨀

⨀

“virtual information”

Attention mask of different ops

Information propagation

Mimic the information propagation
of NN computation

• Operation modeled as the
transformation/processing of the propagating
information (attention mask)

• Actual feature map computation: F2=Conv3x3(F0 + F1)
• “Virtual info transformation” in the arch. encoding process:
N2=𝒎𝟐⨀ (N0+N1); 𝑚# = σ(EMB%&'(")"W*) is the attention mask of Conv3x3

0

1

2

3 4

• Architecture encoding: After the
information is propagated for several
steps, the rep. of all nodes are read out
(aggregated) as the architecture
representation

• Architecture encoding : output
“information” is used as the
architecture representation

GATES

• The overall framework of predictor-based NAS with GATES and LtR

2022/11/24 43

Predictor-based NAS framework

Improved architecture encoder, training losses

Overall framework

• Evolutionary Algorithm (EA)
• Random Search (RS)

• Ranking correlation (Kendall’s Tau) of the predictors
− Encoder comparison

− Loss function comparison

2022/11/24 44

• Sample efficiency
− Encoder comparison

− Comparison with baseline search strategies

GATES outperform other encoders consistently,
especially when there are few training samples

Ranking losses are better surrogate
to ranking measures than regression losses

Results on NAS-Bench-101

551.0× and 59.25× more efficient than RS/EA
Median: 220k 24k 0.4k

TA-GATES: More Discriminative Encoding of Operation / Architectures

2022/11/24 45

GATES views an architecture as a DAG with operations.
Drawback: Neglect the “operations are trainable” property of NN architecture.

Conv
3x3 Conv

1x1

Conv
3x3 …

NN
Architecture

Image Feature
input output

Through NN Training, They have
Different Parameters and Functions

Arch
Embeddinginput output

Architecture

GATES Encoder

Conv
3x3

Conv
1x1

Conv
3x3

…

Operation
type-wise

embeddings

Conv 3x3

Conv 1x1…

Max Pool

Current Arch Encoding Scheme
Same Type of Op, Same Embedding

To improve the discriminative modeling of operation and architecture,
should give contextualized embeddings for operations according to the architectural context.

TA-GATES: A Training-Analogous Encoding Scheme

2022/11/24 46

Loss

Update
Params

NN Training
F/B Propagation on Model

TA-GATES Encoding
F/B Passing on DAG

Out Info

Virtual Info

Update
Op Embeddings

An NN architecture determines the NN training dynamics. And it is precisely
through the training process that an operation interacts with other operations (the
architectural context) and gets its parameters and functionalities.
TA-GATES is designed considering this intrinsic property of NN architectures. It
encodes architectures in an “encoding by training-mimicking” manner,
naturally providing discriminative operation and architecture embeddings.

Results: Comparison with Baseline Encoders

2022/11/24 47

Trained with the same architecture-performance pairs,
TA-GATES consistently outperforms other encoders

Spaces: NB101, NB201, NB301, NDS ENAS
Measures: Kendall‘s Tau, Precision@K, Mean Square Error (MSE), Pearson coefficient of LC

Kendall’s Tau Comparison Example

1. Train the encoder using the GT performances
of some architectures

2. Predict the performances of unseen architectures,
measure how close the predictions are to the GT
performances (ranking and regression quality)

Summary: Methodology of Encoding - Mimic the Information Flow

2022/11/24

𝑎 describes how the data are propagated and processed.

Mimic the data propagation & processing to encode 𝑎.

GATES[1]

[1] Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20.
[2] Ning, Zhou et al., “TA-GATES: An Encoding Scheme for Neural Network Architectures”, NeurIPS’22.

𝑎 determines the learning dynamics

Mimic the training process to encode 𝑎

TA-GATES[2]

Need to consider special properties of the input space!
Mimic the propagation and processing of actual data by architecture 𝑎 to encode 𝑎

1. Graph-based: Map architectures with isomorphic graphs to the
same embedding.
2. Special aggregation function: Reasonable aggregation of other
nodes’ passed information and local node’s feature. Since passed
information indicates “data”, local feature indicates “data processing”
(edge represents “flow direction” instead of “affinity”). These two
piece of information should be treated differently.
3. Special aggregation considering operation semantics: Skip
connections should be treated specially. Map architectures with
isomorphic computations to the same embedding.
4. Special readout function: Corresponding to the arch output,
guarantee discriminative ability related to actual computation.

1. Iteratively refining OP embedding: Discriminate
same-type OPs.
Based on the root cause that operations get
different parameters through training, we use
forward-backward loops for refining.
2. Symmetry-breaking OP embedding: Discriminate
same-type OPs at symmetry position.
Based on the root cause that their parameters are
initialized differently, we use zero-shot with
randomly initialized parameters when encoding
begins for symmetry-breaking.

48

Summary: What Spaces Do Our Encoder Support Now

2022/11/24 Page 49

A100 GPU Versal ACAP TPU v3 Xilinx ZU11

Task /
Dataset

Architecture

Hardware

ViT CNN

Arch + Task[4]
Efficiently compress ViT to
adapt to downstream tasks

(Utilize knowledge on some
tasks to generalize to other tasks)

Encoder design is clearly related to the space. What spaces have we supported?

Arch: Cell-based
CNN Space[1,2]

Efficient exploration and
accurate evaluation

(Utilize knowledge on some archs
to generalize to other archs)

Arch: ViT Space[4]

[1] Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20.
[2] Ning, Zhou et al., “TA-GATES: An Encoding Scheme for Neural Network Architectures”, NeurIPS’22.
[3] Sun, Wang et al., “Gibbon: An Efficient Co-Exploration Framework of NN model and Processing-In-Memory Architecture”, DATE’22.
[4] Zhou, Ning et al., “GiTE: A Generic Vision Transformer Encoding Scheme for Efficient ViT Architecture Search”, under review for CVPR’23.

Arch + Hardware[3] Efficient exploration

Levels of Spaces

Menu

• Utilizing Architecture Encoding for Efficient and Accurate Search

• How to Encode: GATES@ECCV’20, TA-GATES@NeurIPS’22

• How to Learn the Encoder: GATES@ECCV’20, CLOSE@ECCV’22, DELE@AAAI’23

2022/11/24 50

CLOSE: Improving Parameter-Sharing Evaluation

• Motivation: Deciding the sharing scheme based on operation positions is inappropriate.

2022/11/24 51

Should have the flexibility to assign different
Params to Ops with vastly different contexts

(thus different optimal Params)

Should share Params for Ops with similar or
equivalent contexts

[1] Zhou, Ning et al., “CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS”, ECCV’22.

More appropriate sharing scheme:
Decide the sharing scheme based on the operations’ architectural context.

CLOSE: Improving Parameter-Sharing Evaluation

• Method: A new way to construct & learn the SuperNet.
− Decouple the operations and parameters.
− Properly deciding the sharing scheme based on the operation encodings.

2022/11/24 52

GATE Module: Decide the parameters
assignment to the operations based on

the operation encodings.

GLobal Operation Weight (GLOW) block:
Store the operations’ parameters

[1] Zhou, Ning et al., “CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS”, ECCV’22.

Jointly trained using the training loss

CLOSE: Improving Parameter-Sharing Evaluation

• Results
− Kendall’s Tau (KD): The relative difference of the number of concordant pairs and discordant pairs
− P@top5%: The proportion of true top-5% architectures in the top-5% architectures according to the

one-shot estimations

2022/11/24 53

Consistently better ranking quality on
multiple NAS benchmarks
• Higher ranking correlation
• Higher distinguishing ability on top-

performed architectures

[1] Zhou, Ning et al., “CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS”, ECCV’22.

CLOSE: Improving Parameter-Sharing Evaluation

• Results
− Kendall’s Tau (KD): The relative difference of the number of concordant pairs and discordant pairs
− P@top5%: The proportion of true top-5% architectures in the top-5% architectures according to the

one-shot estimations

2022/11/24 54

Consistently better ranking quality on
multiple datasets
• Higher ranking correlation
• Less training cost

“C-100” and “IN-16” denotes the CIFAR-100 and ImageNet-16 datasets.

[1] Zhou, Ning et al., “CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS”, ECCV’22.

DELE

• Predictor-based NAS suffers from the “Cold-Start” problem
− Limited training data for predictor (limited number architecture-performance pairs) => Low ranking

quality for unseen architectures (Poor exploitation) => Low sample efficiency

• How to get better ranking? Utilize other proxy evaluations to help rank directly?
− Challenge: One-shot / Zero-shot evaluations alone cannot work well[2]

• Have prominent biases, cannot work well in all search spaces / for comparing all architectures
• The best ZSE is different across search spaces

2022/11/24 55

[1] Zhao, Ning et al., “Dynamic Ensemble of Low-fidelity Experts: Mitigating NAS Cold-Start”, AAAI’23.
[2] Ning et al., “Evaluating Efficient Performance Estimators of Neural Architectures”, NeurIPS’21.

Architecture
Encoder

Encoding Process

Training Process

Utilizing Low-fidelity Information

Utilize these proxy evaluations as the auxiliary information
in the training process of performance predictor.

DELE

• Dynamic Ensemble Predictor Framework[1]

− Training: Two-step training framework
• Step 1: Pretrain multiple experts independently

using low-fidelity evaluations
• Step 2: Finetune ensemble network using

ground-truth evaluations

− Construction: Learnable gating network to fuse
knowledge from different low-fidelity experts
according to the architecture encoding

2022/11/24 56

Predictor

Train with different
low-fidelity
evaluations

Step 1

LF

Predictor
Step 2

GT Fine-tune with
ground-truth performance

Arch

...
Expert 𝑃"

Train with Grasp

Expert 𝑃#
Train with Snip

Expert 𝑃$
Train with Params

[1] Zhao, Ning et al., “Dynamic Ensemble of Low-fidelity Experts: Mitigating NAS Cold-Start”, AAAI’23.

Learn to fuse knowledge from
different low-fidelity experts

𝒑𝟐
𝒍𝒇𝒑𝟏

𝒍𝒇 𝒑𝑵
𝒍𝒇.. .

Final
Score

𝒈𝟏 .𝒈𝟐 . 𝒈𝑵.𝒈𝟐

Gating Network
Weighting

Coefficients

DELE

• Ranking Quality

2022/11/24 57

Achieve better ranking quality across different search spaces, encoders and training proportions.

• Sample Efficiency

Discover better architectures with less query number.

Summary: Methodology of Encoder Training

2022/11/24

[1] Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20.
[2] Ning, Zhou et al., “TA-GATES: An Encoding Scheme for Neural Network Architectures”, NeurIPS’22.
[3] Zhou, Ning et al., “CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS”, ECCV’22.
[4] Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme with Multifaceted Information”, under review for TPAMI.
[5] Zhao, Ning et al., “Dynamic Ensemble of Low-fidelity Experts: Mitigating NAS Cold-Start”, AAAI’23.

Architecture
Encoder[1,2]

Encoding Process
Training ProcessHow to Train

(Loss) [1,3]

How to train the encoder?
Depends on how we use the encoder!

auxiliary low-fidelity information

#Param GradNorm SynFlow…How to use
during encoding[4]

How to use
during training[4,5]

Low-fidelity information can
be beneficial for modeling
Utilize low-fidelity information
in encoding and training

DELE/GATES++[4,5]

How to utilize more information (what information)?
Incorporate the knowledge into encoding or through training.

Use encoder to rank
architecture performance

Maximize ranking ability i.e.,
Minimize ranking loss

GATES[1]

Use encoder to choose
parameters for operations

Minimize parameter-sharing
loss, train jointly with supernet

CLOSE[3]

58

Menu

2022/11/24 59

1. Basics
2. Field Summary: Questions and Development

a) What to Search
b) How to Search
c) What Can Search Tell Us

3. Our Work: Utilizing Architecture Encoding to
Answer “How to Search”

4. Summary

Neural Architecture Search

• Problem Definition

• Three components of NAS: Search space; Search strategy; Evaluation strategy
− Search space; Architecture; Decision; Choice

• Three Research Questions
− What to search: Which decisions’ choice matters for objectives

• Topological space: Macro -> Micro; Hardware-friendly space; Outside NAS or outside DL

− How to search: How to efficiently search for promising architectures
• Improve the sample efficiency of search strategy: Exploration V.S. Exploitation
• Reduce the complexity of search space: Factorization / Partition
• Accelerate the evaluation strategy: Standalone / Morphism / One-shot / Zero-shot

− What can search tell us: What does NAS process return to the user
• Architecture; Pareto curve of architectures; Rules of decision choices (sub-space of architectures)

2022/11/24 60

Architecture Encoding Can Help Answer These Questions

2022/11/24 61

[1] Ning et al., “A Generic Graph-based Neural Architecture Encoding Scheme for Predictor-based NAS”, ECCV’20.
[2] Ning, Zhou et al., “TA-GATES: An Encoding Scheme for Neural Network Architectures”, NeurIPS’22.
[3] Sun, Wang et al., “Gibbon: An Efficient Co-Exploration Framework of NN Model and Processing-In-Memory Architecture”, DATE’22.
[4] Zhao, Ning et al., “Dynamic Ensemble of Low-fidelity Experts: Mitigating NAS Cold-Start”, AAAI’23.
[5] Zhou, Ning et al., “CLOSE: Curriculum Learning On the Sharing Extent Towards Better One-shot NAS”, ECCV’22.
Ru et al., “Interpretable Neural Architecture Search via Bayesian Optimization with WL Kernels”, ICLR’21

• How to encode: Mimic the information flow to encode the operation and architecture

• How to use: A good encoding of architectures can be used for…

• How to train: The encoder should be trained according to its usage (training loss, utilize
other information)

3. Interpretation[Ru et al., 2021]

Interpret which architectural
pattern is beneficial efficiently (though biased)

1. Exploration Acceleration[1,2,3,4]

Improve the sample efficiency of NAS or Co-Exploration

2. Better Evaluation[5]

Improve parameter-sharing evaluation

How to Search

What Can Search Tell Us

What’s Next

• Mind the search space (what to search)

• Open the black box (what can search tell us)

• Handle the dynamicity (how to search)

• Concrete applications (how to search)

2022/11/24 62

63

Thanks for Listening!
• Check our website introducing NAS and summarizing our work at

https://sites.google.com/view/nas-nicsefc

• Discuss with me by emailing foxdoraame@gmail.com

2022/11/24

https://sites.google.com/view/nas-nicsefc
mailto:foxdoraame@gmail.com

